Кривые второго порядка

 

Для практики большое значение имеют линии, которые в прямоугольной системе координат описываются алгебраическими уравнениями второй степени

 

Ax2 + B xy + C y2 + Dx + Ey + F = 0                                                             (11)

 

причем хотя бы один из коэффициентов А, B, С  должен быть не равен нулю. Рассмотрим наиболее важные частные случаи уравнения (11).

 

Окружность. Окружностью называется геометрическое место точек равноудаленных от данной точки, называемой центром окружности.

Уравнение окружности радиуса R с центром в точке M(а,b) имеет вид

 

(x - a)2 + (y - b)2 = R2                                                                                       (12)

 

Если раскрыть скобки, то мы увидим, что уравнение (11) получается из уравнения (12), если A = C = 1, B = 0, D  = -2a, E = -2b, F = - R2 + a2 + b2

Пример. Пусть задано уравнение х2 + y2 - 4x = 0. Является ли это уравнение уравнением окружности и, если да, то каков ее радиус и координаты центра? Решение. Приведем данное уравнение к виду (12). Выделим полный квадрат относительно х, прибавляя и вычитая число 4.

x2 + y2 - 4x = (x2 - 4x + 4) + y2 - 4 = 0  или (x - 2)2 + y2 = 22.                     (13)

 

Сравнивая (12) с (13), видим, что заданное уравнение есть уравнение окружности радиусом R =2 и с центром в точке M с координатами а = 2, b = 0.

 

Эллипс. Эллипс - замкнутая кривая, для всех точек которой сумма расстояний до двух фиксированных точек, называемых фокусами эллипса, одинакова и равна, по определению, 2а. Для эллипса, представленного на рис.19, сумма расстояний MF1 и MF2 равна сумме расстояний NF1 и NF2 и равна 2а. Каноническое уравнение эллипса, центр симметрии которого находится в начале координат, а фокусы лежат на оси ОХ симметрично относительно оси OY

 

                                                                                                     (14)

 

Параметры a и b называются его полуосями. Уравнение (11) получим из (14) если B = D = E = 0, A = 1/a2, C = 1/b2, F = -1. Очевидно, что окружность - частный случай эллипса, у которого a = b = R, а центр находится в начале координат.

Рис. 19. Эллипс

Гипербола. Гипербола – неограниченная кривая, для всех точек которой разность расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная (рис. 20). Разность MF2 – MF1 равна разности NF1 – NF2 и по определению равна 2а. Каноническое уравнение гиперболы, центр симметрии которой совпадает с началом координат, а фокусы лежат на ост OX симметрично оси OY

 

,                                                                                                      (15)

 

Параметры а и b называются полуосью и мнимой полуосью гиперболы. Уравнение (11) получим из (15) если B = D = E = 0, A =1 /a2, C = (-1)/b2, F = -1. Особенность гиперболы – наличие асимптот - прямых к которым неограниченно приближается кривая при . Уравнения асимптот .

 

Рис. 20. Гипербола

Парабола. Парабола - неограниченная кривая, все точки которой (см. рис.21) равноудалены от точки, называемой фокусом и прямой, называемой директриссой. Для параболы изображенной на рис. 21 расстояния MK = MF, NF = NL и DO = OF. Каноническое уравнение параболы, ось которой совпадает с осью ОХ, а вершина лежит в начале координат

 

       y2 = 2px,                                                                                                          (16)

 

Уравнение (11) получим из (16) если A = B = E = F = 0, C = 1, D = -2p.

Рис. 21. Парабола.

 

Сделав поворот и сдвиг системы координат любое уравнение (11) можно привести только к одному из трех уравнений второй степени: (13-15) или к уравнению вида а2 х2 = b2 y2 , которому соответствуют две прямые. Это означает, что уравнениями второй степени можно описать только эллипс (и его частный случай окружность), гиперболу или параболу. Все другие кривые в прямоугольной системе координат будут описываться уравнениями более высокого порядка.

Ниже приведены канонические уравнения кривых второго порядка с центром симметрии (в случае параболы – вершиной) в начале координат (случай А) и в точке С (x 0, y 0) (случай В).

                                                         А                                    В

Окружность

Эллипс

Гипербола

Парабола    

 

Пример. Дано уравнение кривой второго порядка . Определить тип кривой и  сделать чертеж.

Решение. Сравнивая с табличными данными находим, что это парабола, вершига которой находится в точке С (x 0, y 0). приводим уравнение параболы к виду .

х0 = 0, у0 = 2, р = 1. Чертеж

Рис. 22.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: