Методологические вопросы прикладной статистики

Лекция 1.

Понятие измерения

Методологические вопросы прикладной статистики

«Зрелость науки обычно измеряется тем, в какой мере она использует математику. Сама же математика не является наукой в эмпирическом смысле, но представляет собой формальную логическую, символическую систему, своего рода игру знаков и правил», — так начинает С.С. Стивене известный психолог в своей книге «Экспериментальная психология».

Наиболее естественным путем, которым математика проникает в психологию, является математическая статистика.

Правильное применение статистики позволяет ученому:

1) доказывать правильность и обоснованность используемых методических приемов и методов;

2) строго обосновывать экспериментальные планы;

3) обобщать данные эксперимента;

4) находить зависимости между экспериментальными данными;

5) выявлять наличие существенных различий между группами испытуемых (например, экспериментальными и контрольными);

6) строить статистические предсказания;

7) избегать логических и содержательных ошибок имногое другое.

 

Следует заметить, что нельзя переоценивать значение математики (статистики) в психологии. Сама по себе статистика – это только инструментарий, помогающий психологу в сложном экспериментальном материале. Наиболее важным в любом эксперименте является четкая постановка задачи, тщательное планирование эксперимента, построение непротиворечивых гипотез.

При разработке и применении методов прикладной статистики необходимо опираться на четкие методологические принципы, разработанные поколениями специалистов. Рассмотрим некоторые из них.

Разработка и применение методов прикладной статистики предполагает последовательное осуществление трех этапов исследования.

Первый - от исходной практической проблемы до теоретической чисто математической задачи.

Второй – внутриматематическое изучение и решение этой задачи.

Третий – переход от математических выводов обратно к практической проблеме.

В области моделирования задач прикладной статистики, как, впрочем, и в иных областях применения математики и кибернетики, целесообразно выделять четверки проблем:

ЗАДАЧА – МОДЕЛЬ - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.

Обсудим каждую из только что выделенных составляющих.

Задача, как правило, порождена потребностями той или иной прикладной области. Вполне понятно, что при этом происходит одна из возможных математических формализаций реальной ситуации.

Задача может быть порождена также обобщением потребностей ряда прикладных областей.

Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают статистикам.

В соответствии с поставленной задачей строится (или выбирается из арсенала уже известных) модель, которая в наибольшей мере подходит для решения поставленной задачи.

Математическая модель – это система математических соотношений, приближенно, в абстрактной форме описывающих изучаемый процесс или систему; это отражение оригинала в виде функций, уравнений, неравенств, …

Одна и та же математическая модель может применяться для решения самых разных по своей прикладной сущности задач. 

Метод, используемый в рамках определенной математической модели - это уже во многом, если не в основном, дело математиков. В моделях прикладной статистики речь идет, например, о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В двух первых случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.

Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов. В настоящее время для решения практически важных задач могут быть использованы современные информационные технологии на основе метода статистических испытаний и соответствующих датчиков псевдослучайных чисел. Они уже заметно потеснили асимптотические методы математической статистики. В проблеме однородности для проверки одной и той же гипотезы совпадения функций распределения, например, могут быть применены самые разные методы – Смирнова, Лемана - Розенблатта, Вилкоксона и др.

Наконец, рассмотрим последний элемент четверки - условия применимости. Он - полностью внутриматематический. С точки зрения математика замена условия (кусочной) дифференцируемости некоторой функции на условие ее непрерывности может представляться существенным научным достижением, в то время как прикладник оценить это достижение не сможет. Для него, как и во времена Ньютона и Лейбница, непрерывные функции мало отличаются от (кусочно) дифференцируемых функций. Точнее, они одинаково хорошо (или одинаково плохо) могут быть использованы для описания реальной действительности.

Точно также прикладник не сможет оценить внутриматематическое достижение, состоящее в переходе от условия конечности четвертого момента случайной величины к условию конечности дисперсии. Поскольку результаты реальных измерений получены с помощью некоторого прибора (средства измерения), шкала которого конечна, то прикладник априори уверен, что все результаты измерений заведомо лежат на некотором отрезке (т.е. финитны). Он с некоторым недоумением наблюдает за математиком, который рассуждает о конечности тех или иных моментов - для прикладника они заведомо конечны.

Математики и прикладники. Таким образом, в настоящее время наблюдается значительное расхождение интересов "типового" математика и "типового" прикладника. Конечно, мы рассуждаем здесь, строя гипотетические модели восприятия и поведения того и другого. Опишем эти модели более подробно.

Прикладник заинтересован в научно обоснованном решении стоящих перед ним реальных задач. При этом при формализации задач он готов принять достаточно сильные математические предположения. Например, с точки зрения прикладника случайные величины могут принимать конечное множество значений, или быть финитными, или иметь нужное математику число моментов, и т.д. Как говорил А.Н. Колмогоров, переход от дискретности к непрерывности для прикладника оправдан только тогда, когда этот переход облегчает выкладки и расчеты, как в математическом анализе переход от сумм к интегралам облегчает рассуждения и вычисления. Если же при переходе к непрерывности возникают сложности типа необходимости доказательства измеримости тех или иных величин относительно тех или иных сигма-алгебр, то прикладник готов вернуться к постановке задачи с конечным вероятностным пространством. Здесь уместно напомнить, что один из выдающихся вероятностников ХХ в. В. Феллер выпустил свой учебник по теории вероятностей в двух книгах, посвятив первую дискретным вероятностным пространствам, а вторую - непрерывным.

Другой пример - задачи оптимизации. Если оптимизация проводится по конечному множеству, то оптимум всегда достигается (хотя может быть не единственным). Если же множество параметров бесконечно, то задача оптимизации может и не иметь решения. Поэтому у прикладника есть стимул ограничиться математическими моделями с конечным множеством параметров. Напомним в связи с этим, что основные задачи прикладной статистики допускают оптимизационную постановку, а статистика объектов нечисловой природы как целое построена на решении оптимизационных задач (а не на суммировании тех или иных выражений, поскольку в пространствах объектов нечисловой природы нет операции сложения).

Модель поведения типового математика совершенно иная. Он, как правило, не обдумывает реальные задачи, поскольку не вникает в конкретные прикладные области. (Если же вникает, то является уже не только математиком, но и прикладником, и его поведение промоделировано в предыдущих абзацах.) Математик берет те задачи, которые уже ранее рассматривались, и старается получить для них математически интересные результаты. Зачастую это означает борьбу за ослабление математических условий, при которых были получены предыдущие результаты. При этом математика абсолютно не волнует, имеют ли какое-либо реальное содержание доказанные им теоремы, могут ли они принести какую-либо пользу прикладнику. Его интересует реакция математической общественности, а не реакция прикладников.

 

Измерительные шкалы

Понятие измерения

Признаки и переменные – это измеряемые психологические явления. Такими явлениями могут быть: время решения некоторой задачи, количество допущенных ошибок, уровень тревожности, показатель интеллектуальной лабильности. Интенсивность агрессивных реакций, и др…

Психологические переменные – это случайные величины, т.к. не известно заранее, какое значение они примут.

Количественные данные, полученные в результате тщательно спланированного эксперимента по определенным измерительным процедурам, используются затем для статистической обработки.

Измерение в самом широком смысле может быть определено как приписывание чисел объектам или событиям, которое осуществляется по определенным правилам. Эти правила должны устанавливать соответствие между некоторыми свойствами рассматриваемых объектов, с одной стороны, и ряда чисел — с другой. В целом можно сказать, что измерение — это процедура, с помощью которой измеряемый объект сравнивается с некоторым эталоном и получает численное выражение в определенном масштабе или шкале.

В каждом конкретном случае измерение является операцией, с помощью которой экспериментальным данным придается форма связного числового сообщения. Именно закодированная в числовой форме информация позволяет использовать математические методы и выявлять то, что без обращения к числовой интерпретации могло бы остаться скрытым; кроме того, числовое представление объектов или событий позволяет оперировать сложными понятиями в более сокращенной форме. Именно это и является причиной использования измерений в любой науке, использующей статистические методы.

 

Измерительные шкалы

Любой вид измерения предполагает наличие единиц измерения. Единица измерения это та «измерительная палочка», как говорил С. Стивенс, которая является условным эталоном для осуществления тех или иных измерительных процедур. В естественных науках и технике существуют стандартные единицы измерения, например, градус, метр, ампер и т.д.

Согласно С. Стивенсу (1951), существует четыре типа измерительных шкал (или способов измерения):

1) номинативная, номинальная или шкала наименований;

2) порядковая, ординарная или ранговая шкала;

3) интервальная или шкала равных интервалов;

4) шкала равных отношений, или шкала отношений.

Все находящиеся в одной строчке наименования являются синонимами и поэтому в дальнейшем изложении будут использоваться на равных основаниях.

Процесс присвоения количественных (числовых) значений, имеющейся у исследователя информации, называется кодированием. Иными словами — кодирование это такая операция, с помощью которой экспериментальным данным придается форма числового сообщения (кода).

Каждая измерительная шкала имеет собственную, отличную от других форму числового представления, или кода. Поэтому закодированные признаки изучаемого явления, измеренные по одной из названных шкал, фиксируются в строго определенной числовой системе, определяемой особенностями используемой шкалы. Измерения, осуществляемые с помощью двух первых шкал, считаются качественными, а осуществляемые с помощью двух последних шкал — количественными.

Специфические особенности измерительных шкал обязательно должны учитываться при получении экспериментального материала в прикладных исследованиях. После измерения, проведенного в той или иной шкале, исследователь будет оперировать реальными свойствами изучаемого явления, представленного числовыми кодами. Именно это и позволяет исследователю применять соответствующие статистические операции к полученным экспериментальным данным.

Поэтому закодированные признаки изучаемого явления, измеренные по одной из названных выше шкал, фиксируются в строго определенной знаковой или числовой системе, задаваемой правилами построения используемой шкалы. Нестандартизованная процедура оперирования с числами (кодами), полученными в разных измерительных шкалах, неизбежно приведет к искажению результатов исследования, а то и просто к неправильному выводу.

Получив в соответствующей шкале массив экспериментальных данных, исследователь начинает окончательное оформление результатов своей работы в виде таблиц, графиков, статистических выкладок и других процедур, необходимых для получения строгого вывода из его экспериментального исследования. Самое главное, однако, о чем должен помнить исследователь при выборе способа измерения, это то, что он должен соответствовать поставленной задаче исследования.

Рассмотрим подробно все четыре шкалы.

1.3. Номинативная шкала (шкала наименований)

Измерение в номинативной шкале (номинальной, или шкале наименований) состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа (численного, буквенного и т.п.). По сути дела, процедура измерения сводится к классификации свойств, группировке объектов, к объединению их в классы, группы при условии, что объекты, принадлежащие к одному классу, идентичны (или аналогичны) друг другу в отношении какого-либо признака или свойства, тогда как объекты, различающиеся по этому признаку, попадают в разные классы.

Иными словами, при измерениях по этой шкале осуществляется классификация или распределение объектов (например, особенностей вида) на непересекающиеся классы, группы. Таких непересекающихся классов может быть несколько. Классический пример измерения по номинативной шкале в психологии — разбиение людей по четырем темпераментам: сангвиник, холерик, флегматик и меланхолик.

Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга, но не подразумевает каких-либо количественных операций с ними. Так, для признаков, измеренных по этой шкале нельзя сказать, что какой-то из них больше, а какой-то меньше, какой-то лучше, а какой-то хуже. Можно лишь утверждать, что признаки, попавшие в разные группы (классы) различны. Последнее и характеризует данную шкалу как качественную.

Пример большего числа классов разбиения по номинативной шкале — нумерация игроков спортивных команд.

Следует подчеркнуть, что присваиваемые объектам в номинативной шкале символы являются условными, их можно заменитьодин на другой без ущерба для изучаемого объекта или явления. Более того, поскольку эти символы не несут никакой информации, операции с ними не имеют смысла. В частности, упорядочить (ранжировать) пункты рассмотренных выше примеров невозможно, более того, нельзя сказать, какой из этих пунктов является наиболее значимым, а какой наименее.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и б, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным.

Вдихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет. Например, в одном конкретном исследовании признак «полная семья» проявился у 23 школьников из 30, т.е. 23 школьникам можно поставить, например, цифру 1, соответствующую признаку «полная семья», остальным цифру 0, соответствующую признаку — «неполная семья».

Приведем еще примеры, относящиеся к измерениям по дихотомической шкале: испытуемый ответил на пункт опросника либо «да», либо «нет»; кто-то проголосовал «за», кто-то «против»; этот человек «экстраверт», а другой «интроверт»; этот человек умеет водить машину, тот не умеет и т.п. Во всех перечис­ленных случаях получаются два непересекающихся множества, применительно к которым можно только подсчитать количество индивидов, обладающих тем или иным признаком.

В номинативной шкале можно подсчитать частоту встречаемости признака т.е. число испытуемых, явлений и т.п, попавших в данный класс (группу) и обладающих данным свойством. Например, мы хотим выяснить число мальчиков и девочек в спортивной секции. Для этого мы кодируем мальчиков, например, цифрой 1, а девочек — цифрой 0. После этого подсчитываем общее количество цифр (кодов) 1 и 0. Это и есть подсчет частоты признака. Понятно, что можно было закодировать мальчиков буквой А или символом &, а девочек буквой Б или символом #, а потом подсчитать количество букв А или символов & для мальчиков и букв Б или символов # — для девочек: результат, очевидно, будет тем же самым.

Единица измерения, которой мы оперируем в случае номинативной шкалы, — это количество наблюдений (испытуемых, свойств, реакций и т.п.)- Общее число наблюдений (респондентов и т.п.) принимается за 100%, и тогда мы можем вычислить процентное соотношение, например, мальчиков и девочек в классе. Если же количество групп разбиения больше чем две, то также можно подсчитать процентный состав испытуемых (респондентов) в каждой группе.

1.4. Порядковая (ранговая, ординарная) шкала

Измерение по этой шкале расчленяет всю совокупность измеренных признаков на такие множества, которые связаны между собой отношениями типа «больше — меньше», «выше — ниже», «сильнее — слабее» и т.п. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой (ранговой) шкале все признаки располагаются по рангу — от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т.п.) или наоборот.

Типичный и очень хорошо известный всем пример порядковой шкалы — это школьные оценки: от 5 до 1 балла. Еще пример — судейство в некоторых видах спорта или зрелищных программах (КВН, ДОГШОУ и др.), которые также представляют собой вариант ранжирования.

Еще пример: исследователь изучает группу спортсменов, имеющих следующую градацию званий: мастер спорта, кандидат в мастера и перворазрядник. В этом случае удобно каждую отдельную группу обозначить собственным символом, например, 1, 2 и 3 (или наоборот — 3, 2 и 1). Эти же градации можно обозначить и другими символами, например, буквами А, Б и В. При этом на основе этих символов можно сказать, что представитель первой группы имеет более высокую спортивную квалификацию, чем представители двух других.

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или — низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядковой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний — 2, выс­ший — 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки стати­стических гипотез.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей.

Шкала интервалов

В шкале интервалов, или интервальной шкале, каждое из воз­можных значений измеренных величин отстоит от ближайшего на равном расстоянии. Главное понятие этой шкалы — интервал, который можно определить как долю или часть измеряемого свойства между двумя соседними позициями на шкале. Размер интервала — величина, фиксированная и постоянная на всех уча­стках шкалы. При работе с этой шкалой измеряемому свойству или предмету присваивается число, равное количеству единиц измерения, эквивалентное количеству имеющегося свойства. Важной особенностью шкалы интервалов является то, что у нее нет естественной точки отсчета (нуль условен и не ука­зывает на отсутствие измеряемого свойства).

Шкала отношений

Шкалу отношений называют также шкалой равных отноше­ний. Особенностью этой шкалы является наличие твердо фикси­рованного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наибо­лее информативной шкалой, допускающей любые математичес­кие операции и использование разнообразных статистических методов.

Шкала отношений по сути очень близка интервальной, по­скольку если строго фиксировать начало отсчета, то любая ин­тервальная шкала превращается в шкалу отношений.

Именно в шкале отношений производятся точные и сверх­точные измерения в таких науках, как физика, химия, микро­биология, психофизика, психо­физиология, психогенетика и т.д.

Введем еще две шкалы, которые появились несколько позже, чем те, о которых велась речь выше.

Шкала разностей

В шкале разностей есть естественная единица измерения, но нет естественного начала отсчета. Время измеряется по шкале разностей, если год (или сутки - от полудня до полудня) принимаем естественной единицей измерения, и по шкале интервалов в общем случае. На современном уровне знаний естественного начала отсчета указать нельзя. Дату сотворения мира различные авторы рассчитывают по-разному, равно как и момент рождества Христова. Так, согласно новой статистической хронологии [3], разработанной группой известного историка акад. РАН А.Т.Фоменко, Господь Иисус Христос родился примерно в 1054 г. по принятому ныне летоисчислению в Стамбуле (он же - Царьград, Византия, Троя, Иерусалим, Рим).

Абсолютная шкала

Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.

В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.

Обсуждение шкал измерения будет продолжено далее в более широком контексте – как одного из понятий статистики нечисловых данных.

Все шкалы измерения делят на две группы - шкалы качественных признаков и шкалы количественных признаков.

Порядковая шкала и шкала наименований- основные шкалы качественных признаков.

Шкалы количественных признаков -это шкалы интервалов, отношений, разностей, абсолютная.  

 

Контрольные вопросы:

1. Для чего используется математическая статистика.

2. Перечислите этапы исследования, охарактеризуйте каждый этап.

3. Дайте определение Математической модели.

4. Дайте понятие измерения

5. Назовите школы измерения и охарактеризуйте их

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: