Функціональні простори і проблема представлення залежності як суперпозиції елементарних

Розглядаючи політичні процеси і об'єкти як функції на безлічі політичних індикаторів, ми тим самим стаємо перед проблемою характеризації цих математичних об'єктів, знаходженні серед них основних, базових, з яких виходить безліч інших досліджуваних об'єктів. Інша виникаюча проблема - це проблема метрики, тобто, які об'єкти (функції) ми вважатимемо близькими (схожими), а які навпроти далекими, істотно тими, що розрізняються по своїх характеристиках.

У виникаючих моделях в системі міжнародних відносин разом з проблемою метрики (тобто, фактично характеризації виникаючих функціональних просторів) виникає проблема допустимості даних математичних абстракцій. Відомий парадокс Кантора, пов'язаний з категорією „безлічі взагалі всіх множин” приводить до нерозв'язної суперечності, вихід з якої, очевидно, тільки один - заборонити розгляд подібних конструкцій. Тим самим ставляться певні межі абстрагуванню. Це ж питання виникає при розгляді допустимої безлічі функцій, створюючи дані функціональні простори (ясно, що раз не можна розглядати „безліч узагалі всіх множин”, отже, не можна розглядати і характеристичну функцію цієї множини.

Проблема функціональної залежності, проте, багато складніше апорій Зенона. Кантора і т.п.

Інтуїтивне сприйняття функціональної залежності як прояв зв'язку явищ в різних модифікаціях властиве людству з давніх часів, математика протягом всієї історії свого розвитку тими або іншими засобами намагалася виразити цей зв'язок.

Починаючи з навчанням античних математиків про геометричні місця і складанням всіляких таблиць поняття функції зазнавало всі нові і нові зміни. Згадки про функціональну залежність зустрічаються у П. Ферма(1636 р.), Р. Декарта (1637 р.), И. Барроу (1669 р.). Термін „функція” зобов'язаний своєю появою В. Лейбніцу(1692 р.). Так чи інакше поняття функції зв'язувалося з якимсь аналітичним виразом, задаючим її, Так у И. Бернуллі (1718 р.) „функція, це величина, складена із змінної і постійної”; у Л. Ейлера „функція змінної кількості є аналітичний вираз, складений яким-небудь чином з цієї змінної кількості, чисел або постійних кількостей”.

Перехід від інтуїтивного сприйняття функції до її більш менш схожому на сучасне визначення намітився в знаменитій суперечці про звучну струну.

В XVIII столітті, закінчивши вивчення систем з одним ступенем свободи, математики переходять до систем з декількома ступенями. В 1727 р. Іоганн Бернуллі, а в 1732-1736 рр. Данило Бернуллі і Леонард Ейлер розглядають тільки головні коливання навантаженої невагомої струни. Розглядаючи тільки головні коливання системи, ні Бернуллі, ні Ейлер не помітили, що у разі довільного руху справедливий принцип суперпозиції, тобто складання головних коливань, хоча теоретики музики (Рамо, наприклад, в 1726 р.) давно указували, що окрім основного тону музичного інструменту є ще і обертони. Існував навіть помилковий погляд, що головними коливаннями струни і вичерпуються всі можливі коливання системи (Тейлор, Д. Бернуллі).

Рішення задачі про струну, дане майже одночасно Д'Аламбером і Л. Ейлером (відповідно в 1747 і 1748 рр.) при зовні формальній схожості мали принципово різний зміст, що виражається в різному розумінні Функції. Якщо Д'Аламбер усюди під функцією розумів певний аналітичний вираз, то Ейлер, не відкидаючи це, допуску функції як відповідність за допомогою кривої, утвореної „вільним рухом руки”, або навіть Функції змішаного типу, тобто на одних ділянках один аналітичний вираз, на інших інше або навіть довільна крива.

Трапилося так, що розвиток конкретного матеріалу переріс рамки концепцій і точок зору, що склалися раніше, на основні поняття аналізу. Відсутність належної строгості в обгрунтовуванні накопичених результатів, настійні вимоги коштують практичних задач приводили до перегляду основ аналізу таких як „довільна крива”, „функція”, „інтеграл” і т.п. Губився органічний зв'язок між чистим і прикладним знанням, здорова рівновага між абстрактною спільністю і повнокровною конкретністю була порушена „...віддавшись справжній оргії інтуїтивних припущень, перемішуючи несуперечливі висновки з безглуздими, підлога у містично мі твердженнями, сліпи довіряючись надлюдській силі формальних процедур (математики) відкрили новий математичний світ, повний незчисленних багатств...”. Але вимоги евклідової строгості і внутрішньої естетики брали своє.

„в XIX сторіччі усвідомлення необхідності консолідувати науку, особливо) у зв'язку з потребами вищої освіти... повело до ревізії основ математики з'ясуванню понять межі. Таким чином, XIX не тільки став епохою нових успіхів, але і був ознаменований плідним поверненням до класичного ідеалі точності і строгості доказів. „ Зараз, озираючись назад, важко дати об'єктивну оцінку позицій всіх сторін, що сперечаються, і аналіз всі XVIII труднощів, що стоять перед математиками, можна лише з певним ступенем упевненості сказати, що основне питання в полеміці Ейлера і Д'Аламбера було таким якщо відхилювати струну довільним чином, то чи існує формула, що дає її форму? Рішення цього питання немає ні у Ейлера і Д' Аламбера, ні в більш пізніх роботах Бернуллі і Лагранжа. Питання актуальне дотепер. „суперечка про звучну струну все ще триває, тільки, зрозуміло, вже зовсім в іншій науковій обстановці, іншими особами і в іншій термінології”. Безперервне поглиблення поняття функції і його еволюція продовжується і понині. Жодне формальне визначення, як пише Н.Н. Лузін, не може охопити всього зміст поняття функції, засвоїти яке можна лише прослідивши основні лінії розвитку, пов'язаного з розвитком природознавства, зокрема, математичної фізики. Нас цікавить, природно, таке питання: коли, на якому етапі свого розвитку поняття функції і тригонометричного ряду стикуються між собою! даючи могутній апарат аналітичного уявлення на додаток до служимо шему роками вірним і, мабуть, єдиним засобом аналітичного уявлення - апарату статечних рядів?

Тригонометричні ряди як такі мають свою історію, висхідну до Ейлеру. В листі до Гольдбаха в 1744 р. Ейлер наводить приклад розкладання:

одержуючи його методом статечних рядів. „поява вказаного ряду у Ейлере була справою чисто випадковим і в усякому разі нічого по суті для розуміння природи і характеру, а також можливості уявності довільних функцій тригонометричними рядами не давало. Ейлер тут стояв на чисто аналітичній точці зору.”5

Поява тригонометричних рядів у Ейлера, як рахує А.Б. Паплаускас має прикладний характер, а самі ряди були лише інструментом дослідження різних питань астрономії, зокрема, небесної механіки. Тому Ейлер і не піднімає питань обгрунтовування збіжності і розкладності. Узгодження на практиці одержаних результатів з дійсністю наштовхує Ейлера на інші розкладання. „часто говорять, що Ейлер... інстинктивно знаходив тільки правильні результати, хоча і слідуючи помилковим шляхом: але сказати це - значить дуже багато: математика перейшла до свого порядку денного через свої неправильні результати”.

Досліди із звучною струною з'явилися тим пробним, на якому перевірялася концепція Д. Бернуллі. Вони поколивали його первинну думку про існування тільки головних коливань, приводячи до відкриття принципу суперпозиції, д. Бернуллі знайшов, що найзагальніший рух струни описується виразом

Тут основний тон визначається першій складовій, їй відповідає період Т,=2 I/a, іншим відповідають періоди Т2=1/2Т1, і т.д. Рішення, повне фізичного змісту, перевірене експериментом і що узгоджується з миючими вченням про обертони, привело Д. Бернулли до переконання, що всі рішення Д’Аламбера і Ейлера охоплюються цим. Таким чином, виникнувши з прикладних задач тригонометричні ряди знаходили в практиці як своє непряме обгрунтовування, так і місце додатку.

Робота Бернуллі була піддана критиці як з боку Ейлера, так і з боку Д’Аламбера. Ніхто не вірив, що за допомогою тригонометричних рядів можна представляти будь-які функції, задані графічно. Позначалася відсутність чіткого поняття функції (у всіх були різні думки), і дуже сильно тиснув на все нове важкий вантаж аналітичного уявлення статечними рядами, що служили протягом років єдиним засобом аналітичного уявлення.

Свіжий струмінь вдихнув Лагранж, застосувавши новий, відкритий ним метод. Одержавши результат Бернуллі аналітичним чином і частина результатів Ейлера, він проте не зміг їх строго обгрунтувати, змішуючи поняття великого і бесконечного, дискретного і безперервного, не обгрунтовувавши постійні переходи до межі. Д'Аламбер критикував нестрогість міркувань Лагранжа, його тези „...ні одна людина, замінивши ряд 1 + х + х2 +... на 1/(1 -х) ще не вчинив помилку”, „...природа не може зупинити викладень, оскільки фізично кутових крапок у струни немає, а завжди є той, що деяка закруглює, викликана жорсткістю струни”.

Лагранж майже дійшов до формул Фур’є, але так і не відкрив їх. В 1807 р. Французький математик і фізик Жан Батист Фур’є в роботах по аналітичній теорії тепла вказав, що зв'язні лінії, задані на кінцевих ділянках рівняннями, уявних на будь-якій такій ділянці тригонометричним рядом

Тим самим всі Ейлерові криві, накреслені вільним рухом руки, виявилися охопленими апаратом тригонометричних рядів. Згладилася невідповідність між уявленням про функціональну залежність і обмеженістю аналітичних засобів їх виразу. Відкриття Фур’є поставило крапку в багаторічній суперечці про струну і послужило великим поштовхом до подальшого розвитку поняття функції і аналізу в цілому.

Необхідно відзначити, що поява парових машин, різних систем і механізмів, пов'язаних з періодичними процесами, поставлена безліч практичних задач, непіддатливих рішенню старими методами, виявивши тим самим потребу у відповідному аналітичному апараті. Створення такого апарату, саме, апарату тригонометричних рядів в роботах Фур’є історично дав новий стимул в розвитку математики в цілому. Подальший розвиток цього апарату йшов по лінії додатків всередині самому математики.

З сучасної точки зору цей факт є однією із закономірностей процесу творчого мислення, коли від індуктивного синтезу (в даному випадку величезного практичного матеріалу і аналітичної техніки XVII-XVHM століть) через стадію аксіоматизації (тобто створення визначень, аксіом, що служать основою теорії, що розвивається) слідує перехід до додатків створеної індуктивної теорії. Останні широко представлені роботами Данжуа, Лебеггі Кантора, Веєрштрасса.

Слід зазначити, що відкриття Фур’є стоїть на шляху відвернення від таких властивостей функцій як аналітичність, гладкість, зображена єдиним аналітичним виразом, збереженням властивостей, що мають місце в деякій околиці на всю область визначення. Подальший розвиток теорії функцій має, на наш погляд, дві тенденції.

Одна з них виявляється в подальшому підвищенні рівня абстракції, відвернення від приватних властивостей, таких як безперервність, вимірність в значенні Бореля, інтегрується. Це приводить Лебега до створення нового інтеграла, Лузіна до нового поняття первісної, Цермело до понять, основними, що є, в аксіоматиці теорії функцій і множин. З другого боку, видне прагнення індивідуалізуватися деякі класи функцій по сукупностям властивостей, конкретизувати об'єкти, що вивчаються. Відзначимо на цьому шляху результати С.Н. Бернштейна, Бореля, Бера про виділення класів функцій речовинного змінного і Веєрштрасса, Мітгаг-Леффлера в комплексному аналізі. Ці тенденції взаємно зв'язані, бо знаходячи достатньо загальні властивості функцій, не можна, очевидно, приписати їх взагалі всім функціям, тобто йде конкретизація класу функцій по знайденій властивості. Нарешті, в математиці завжди бажано знати, наскільки даний клас функцій можна розширити, якщо абстрагуватися від деяких приватних властивостей. Так, наприклад, від аналітичних функцій переходять до квазіаналітичних, гармонійних до квазігармонійних гільбертові простори Lp підсумовуваних функцій до нормованого  і навіть метричному  просторам і т.п. Цей взаємозв'язок абстрактного і I конкретного є однією з внутрішніх причин розвитку математики. Але відкриття Фурье не означало проголошення спокійного життя математикам, хоча і дозволило більшість проблем. І не тільки тому, що (як це з'ясувалося в роботах Дю-Буа-Раймонда) поняття функції достатньо змістовне, щоб допускати вичерпну формалізацію, „...раз виникнувши, ідеї не тільки існують самостійно, але і можуть породжувати нові ідеї. Тому внутрішні логічні взаємозв'язки придбавають величезне значення в розвиток науки, особливо такою абстрактною, як математика.”

Відкриття Фур’є створило умови трактування функції як відповідності вельми загального вигляду. З'явилися визначення у Лакруа, Лобачевського, Діріхле вельми близькі до сучасного. Було ясно, що поняття функції і її аналітичного виразу апріорі не адекватні. Основні питання, що виникли після відкриття Фур’є - це питання збіжності і можливості представлення функції рядами - вже для своєї коректної постановки зажадали введення нових понять. Приклад безперервної функції з рядом Фур’є, що не всюди сходиться, даний Дю-Буа-Раймондом, поставив природне питання: якщо вже для безперервних функцій не вдається добитися уявлення у вигляді ряду Фур’є, що усюди сходиться, то може бути слід уточнити саме поняття „уявлення”? Сприймати функцію як щось дане в завершеному стані, або вимагати можливості конструктивної побудови; які засоби допустимі як елементи конструкцій? Грубо кажучи, кривих виявилося більш ніж формул, як вже наголошувалося знов утворився розрив між арсеналом засобів аналітичної зображеної функцій і самими функціями. Слід зазначити, що в подоланні виникаючих утруднень і зароджуються нові методи, які представляють якісні скачки в розвитку математики. Найбільші математики, як правило, стояли на позиціях того, що математика розвивалася і якісно розвиватиметься, що неминучі ті, що революціонізували, відкриття, що надовго визначають напрями розвитку математики, а, отже, неминучі парадокси і суперечності. Можна привести багато прикладів „мертвих” розділів науки, які раптом „оживали” (наприклад, теорія магнетизму у фізиці). Проте, тезу про безперечну наявність постійних якісних стрибків в розвитку слід застосовувати лише до достатньо широких, змістовних областей знання (порівняйте з тезою: всесвіт в цілому розвивається, окремі її ділянки можуть деградувати). На питання про можливість відкриття” в проективної геометрії, що „революціонізувало, фахівці, напевно, відповідять негативно. Таким чином, разом з рішенням основної задачі зображеної функції тригонометричним рядом Фур’є дали плідну їжу для розвитку різних розділів математики.

Які ж шляхи подальшого розвитку функціональної залежності, її сучасний стан; як розв'язуються питання онтологічного і субстанціонального статусів функції - ці проблеми завжди виникають навкруги будь-якого змістовного поняття. Приклад Дю-Буа-Раймонда, а також приклади Веєрштрасса і Ван-дер-Вардена спонукали математиків до розгляду і більш загальних функцій, ніж безперервні або входять в класифікацію Бера. нерозуміння і недовір'я панувало в кругах старих консервативних математиків.

„ Я з жахом і огидою відвертаюся від цієї розростаючої язви функцій, похідної”-, що не мають, писав Ерміт. Виникнення нових модних методів (теорія безлічі Кантора, теорія інтеграла і заходи Лебега) спричинило за собою появу нових функціональних просторів і видів сходи-Мости. В роботах Діріхле, Пуассона, Жордана указуються класи функцій, для яких збіжність ряду Фур’є безумовно гарантована. Тригонометричні ряди виявляють цікаві властивості (явище Гібса, принцип локалізації), нарешті „наводиться теорія” на диференціювання і інтеграцію тригонометричних рядів, що зустрічаються ще у Ейлера. Докторська дисертація Римана намічає нові підходи до загальних тригонометричних рядів. Надзвичайно тонкі технічні методи дозволили Д.Е. Меньшову майже остаточно вирішити питання про зображену функції тригонометричним рядом, а також питання про цілісність.

В 1905 р. А. Лебег ввів поняття аналітично зображеної функції, як Функції, значення якої виходять з аргументу і постійних величин за допомогою арифметичних операцій і граничних переходів. Приклад А. Лебега, ті. Створення такого апарату, саме, апарату тригонометричних рядів в роботах Фур’є історично дав новий стимул в розвитку математики в цілій. Подальший розвиток цього апарату йшов по лінії додатків усередині самої математики.

З сучасної точки зору цей факт є однією із закономірностей процесу творчого мислення, коли від індуктивного синтезу (в даному випадку величезного практичного матеріалу і аналітичної техніки XVII-XVIM століть) через стадію аксіоматизації (тобто створення визначень, аксіом, які слугують основою теорії, що розвивається) слідує перехід до додатків створеної індуктивної теорії. Останні широко представлені роботами Данжуа, Лебеге, Кантора, Веєрштраса.

Слід зазначити, що відкриття Фур’є стоїть на шляху відвернення від таких властивостей функцій як аналітичність, гладкість, зображена єдиним аналітичним виразом, збереженням властивостей, що мають місце в деякій околиці на всю область визначення. Подальший розвиток теорії функцій має, на наш погляд, дві тенденції.

Одна з них виявляється в подальшому підвищенні рівня абстракції, відвернення від приватних властивостей, таких як безперервність, вимірність в значенні; Бореля, інтегрується. Це приводить Лебега до створення нового інтеграла, Лузіна до нового поняття первісної, Цермело до понять, що є, в аксіоматиці теорії функцій і множин. З другого боку, видне прагнення індивідуалізуватися деякі класи функцій по сукупності властивостей, конкретизувати об'єкти, що вивчаються. Відзначимо на цьому шляху результати С.Н. Бернштейна, Бореля, Бера про виділення класів функцій речовинного змінного і Веєрштраса, Міттаг-Леффлера в комплексному аналізі. Ці тенденції взаємно зв'язані, бо знаходячи достатньо загальні властивості функцій, не можна, очевидно, приписати їх взагалі всім функціям, тобто йде конкретизація класу функцій по знайденій властивості. Нарешті, в математиці завжди бажано знати, наскільки даний клас функцій можна розширити, якщо абстрагуватися від деяких приватних властивостей. Так, наприклад, від аналітичних функцій переходять до квазіаналітичних, гармонійних до квазігармонійних гільбертового простору L2 підсумовуваних функцій до нормованого Lp (p > 1) і навіть метричному Lp (0 < р < 1) просторам і т.п. Цей взаємозв'язок абстрактного і конкретного є однією з внутрішніх причин розвитку математики. Але відкриття Фур’є не означало проголошення спокійного життя математикам, хоча і дозволило більшість проблем. І не тільки тому, що (як це з'ясувалося в роботах Дю-Буа-Раймонда) поняття функції достатньо змістовне, щоб допускати вичерпну формалізацію, „...раз виникнувши, ідеї не тільки існують самостійно, але і можуть породжувати нові ідеї. Тому внутрішні логічні взаємозв'язки придбавають величезне значення в розвиток науки, особливо такою абстрактною, як математика"

Відкриття Фур’є створило умови трактування функції як відповідності вельми загального вигляду. З'явилися визначення у Лакруа, Лобачевського, Діріхле вельми близькі до сучасного. Було ясно, що поняття функції і її аналітичного виразу апріорі не адекватні. Основні питання, що виникли після відкриття Фур’є - це питання збіжності і можливості представлення функції рядами - вже для своєї коректної постановки зажадали введення нових понять. Приклад безперервної функції з рядом Фур’є, що не всюди сходиться, ванний Дю-Буа-Раймондом, поставив природне питання: якщо вже для безперервних функцій не вдається добитися уявлення у вигляді ряду Фур’є, що усюди сходиться, то може бути слід уточнити саме поняття „уявлення”? Сприймати функцію як щось дане в завершеному стані, або вимагати можливості конструктивної побудови; які засоби допустимі як елементи конструкцій? Грубо кажучи, кривих виявилося більш ніж формул, як вже наголошувалося знов утворився розрив між арсеналом засобів аналітичної зображеної функцій і самими функціями. Слід зазначити, що в подоланні виникаючих утруднень і зароджуються нові методи, що представляють якісні скачки в розвитку математики. Найбільші математики, як правило, стояли на позиціях того, що математика розвивалася і якісно розвиватиметься, що неминучі ті, що революціонізували, відкриття, що надовго визначають напрями розвитку математики, а, отже, неминучі парадокси і суперечності. Можна привести багато прикладів „мертвих” розділів науки, які раптом „оживали” (наприклад, теорія магнетизму у фізиці). Проте, тезу про безперечну наявність постійних якісних стрибків в розвитку слід застосовувати лише до достатньо широких, змістовних областей знання (порівняйте з тезою: всесвіт в цілому розвивається, окремі її ділянки можуть деградувати). На питання про можливість відкриття” в проектованої геометрії, що „революціонізувало, фахівці, напевно, відповідять негативно. Таким чином, разом з рішенням основної задачі зображеної функції тригонометричним рядом Фур’є дали плідну їжу для розвитку різних розділів математики.

Які ж шляхи подальшого розвитку функціональної залежності, її сучасний стан; як розв'язуються питання онтологічного і субстанціонального статусів функції - ці проблеми завжди виникають навкруги будь-якого змістовного поняття. Приклад Дю-Буа-Раймонда, а також приклади Веєрштраса і Ван-дер-Вардена спонукали математиків до розгляду і більш загальних функцій, ніж безперервні або входять в класифікацію Бера. нерозуміння і недовір'я панувало в кругах старих консервативних математиків.

„ Я з жахом і огидою відвертаюся від цієї розростаючої язви Функцій, похідної”-, що не мають, писав Ерміт. Виникнення нових модних методів (теорія безлічі Кантора, теорія інтеграла і заходи Лебега) потягло за собою поява нових функціональних просторів і видів сходи-Мости. В роботах Діріхле, Пуассона, Жордана указуються класи функцій, для яких збіжність ряду Фур’є безумовно гарантована. Тригонометричні ряди виявляють цікаві властивості (явище Гиббса, принцип локалізації), нарешті „наводиться теорія” на диференціювання і інтеграцію тригонометричних рядів, що зустрічаються ще у Ейлера. Докторська дисертація Рімана намічає нові підходи до загальних тригонометричних рядів. Тонкі технічні методи дозволили Д.Е, Меньшову майже остаточно зшити питання про зображену функції тригонометричним рядом, а також просто єдиності.

В 1905 р. А. Лебег ввів поняття аналітично зображеної функції, як функції, значення якої виходять з аргументу і постійних величин при допомозі арифметичних операцій і граничних переходів. Приклад А. Лебега, вимірної функції, що не допускає згадане зображення, провів наЯ що коштує фурору.

Здавалося б беззмістовне за часів Ейлера і Д' Аламбера запитання що приписати як сума ряду, що розходиться, - одержав остаточний розвиток в роботах Пуассона, Рімана, Фейера. Ейлерові операції з розбіжними рядами знайшли своє обгрунтовування. Наполеону приписуються слова: „я спочатку завоюю цю землю, а потім знайдуться юристи, щоб обгрунтувати цей акт.” Н математиці відмова від строгих обгрунтовувань часто приводила до сильних результатам, не говорячи вже про пріоритет. Багато результатів Якобі носили бездоказовий характер, „для гаусової строгості у нас немає часу” - говорив він на лекції своїм студентам. Але Якобі випередив багато своїх сучасників, які згодом строге передоказали його результати.

„...в теперішній час математика менш ніж коли-небудь зводиться до чисто механічної гри з ізольованими формулами, біліше ніж коли-небудь інтуїція неподільно панує в генезисі відкриттів. „в той же час „зневага до розробки логічної основи нових теорій часто приводить до кустарництва. Взаємозв'язок інтуїтивного і логічного є необхідний момент в розвитку будь-якої галузі математики. Функції комплексного змінною були набагато більш детально вивчені, коли комплексні числа сталі інтерпретувати як точки площини; назад, комплексний аналіз лише тоді придбав постійну форму, коли став логічно спроможний. Вимоги логічної строгості і консистентності (повнота) основних положень теорії разом із строгим” правилами висновку є одним з критеріїв істинності теорії.

Основне питання в теорії рядів Фур’є - питання збіжності. Після Фур’є вся перші спроби дати строге доведення загальної теореми про збіжність тригонометричних рядів закінчилися невдачею. І, проте, доведення назрівало.

Недоліком існуючих робіт була відсутність точних формулювань умов, при яких указувалися теореми. Честь відкриття умов, що гарантували збіжність, як вже указувалося випалу Діріхле. Питання про те, наскільки повно дозволяє судити ряд Фур’є функції про її поведінку залишався відкритим. Леопольд Феєр своїм результатом про (С,1) - торб мируемости майже усюди ряду Фур’є до Функції, що породила його, показав, що ряд визначає функцію по модулю безлічі міри нуль, про те, що (С,1) сумування тут не можна замінити на звичайну збіжність було доведено в набагато більш пізній роботі А.Н. Колмогорова. Зусиллями Карлесона і Хантл питання про структурні властивості функцій з тими, що сходяться майже усюди рядами Фур’є одержало, мабуть, достатньо вичерпне рішення. Апарат що використовується в цих новітніх роботах, показує, наскільки глибоко розвивалась теорія тригонометричних рядів.

Приблизно до XIX століття математиків цікавили і питання опис субстанціональних об'єктів (числа, прямі, множини, функції і т.п.), питання про „реальне” існування таких об'єктів як, скажімо, ряд або послідовність. Прагнення виражати мовою логіки всі поняття математики з основних привело до переконання про необхідність не визначати деякі об'єкти.

„математики XIX сторіччя сталі потроху зміцнюватися в думці, що питання Ll значенні цих понять як субстанціональних об'єктів в рамках математики

і взагалі де б то не було) просто не має сенсу. Математичні твердження, в які входять ці терміни, відносяться не до фізичної реальності... Питання про те, „ніж насправді” є крапки, прямі і числа, не може і не повинна обговорювати математична наука. „ Звичайно ж математика повинна обговорювати питання про логічну спроможність тих або інших визначень, наприклад, визначення „кардинальне число безлічі всіх кардиналів” і т.п.; проблеми ж природи математичних абстракцій суть прерогатива філософії і вони є окремим випадком так званої проблеми „про онтологічний статус універсалій”. Вживання математичних методів повинне бути обмежено розумними межами. Відома критика Е. Маху, який в своїх роботах зводив всі зв'язки в природі до функціональних („в природі немає ні причини, ні слідства...”). З точки ж зору сучасної математики єство поняття функції полягає в способі відповідності між двома сортами об'єктів вельми загальної природи. Придбаваючи свою конкретну реалізацію в різних способах завдання (словесному, табличному, аналітичному, графічному) воно лише відображає істоту відповідності. Питання, пов'язані з бажанням знайти спосіб зображеної функції, що охоплює всі вказані способи, одержали достатньо вичерпне рішення завдяки апарату тригонометричних рядів.

Таким чином, виникнувши в різний час з потреб практики і потреб самої математики, пройшовши тривалий шлях розвитку від інтуїтивного рівня розуміння до розвиненого сучасного апарату, поняття функції і тригонометричного ряду виявилися вельми спорідненими і взаємозв'язаними.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: