Формулы Ричардсона и Ричардсона-Дэшмана

 

Высокая электропроводимость металлов говорит о том, что электроны способны сравнительно свободно перемещаться внутри всей кристаллической решетки металла.

Затруднен их выход из металла, в вакуум, требующей затраты некоторой энергии, называемой 'работой выхода'.

Это навело на мысль рассматривать металл в первом приближении, просто как потенциальную яму, внутри которой (т.е. в металле) потенциальная энергия электрона равна нулю U0=0, а вне металла, т.е. в вакууме U>0. Эта упрощенная модель позволила объяснить многие явления.

Работа выхода - энергия, которую нужно затрачивать, чтобы энергия электрона стала больше высоты потенциального барьера в поверхностном слое металла. И благодаря туннельному эффекту электрон может покинуть металл.

По принципу Паули на каждом энергетическом уровне может находится max два электрона с противоположными спинами (два квантовых состояния).

верхняя граница заполненных уровней при T=0 (уровень Ферми).

 - максимальный импульс при Т=0.

Для серебра

 - плотность серебра.

A=107,9 - атомный вес (а. е. м).

 или

Работа выхода

Глубина потенциальной ямы , с квантовой точки зрения работа выхода равна разности высоты потенциального барьера и энергии Ферми

Работа выхода характеризует минимальную энергию, которую надо сообщить свободному электрону, находящемуся на уровне Ферми, чтобы он мог преодолеть потенциальный барьер на поверхности твердого тела и выйти за пределы металла,

При комнатной температуре число электронов, энергия которых достаточна для преодоления этого барьера, очень невелика. Однако их число резко возрастает с повышением температуры.

Явление испускания электронов нагретыми телами, называется термоэлектронной эмиссией.

Расчет плотности тока термоэлектронной эмиссии при некоторой температуре Т для металла с работой выхода А. определяется формулой Ричардсона - Дэшмана:

, где

C=Const=

Экспоненциальный множитель

для A>>KT определяет вероятность того, что электрон в металле при температуре Т имеет энергию Uo, достаточную, чтобы покинуть металл, преодолев потенциальный барьер вблизи поверхности металла. Все эти выводы получены с точки зрения квантовой статистики Ферми-Дирака для электронного газа, т.е. для частиц, имеющих полуцелый спин и подчиняющихся принципу Паули.

Дэшман получил формулу исходя из квантовых представлений в 1923г. а Ричардсон вывел в 1901г исходя из классических представлений.

Так эмиссия определяется

Изменение тока связанно с изменением температуры



Литература

 

1. Шпольский Э.В. "Атомные физика". т. I-II М. Наука, 1984 г.

2. Блохинцев Д.И. "Основы Квантовой механики" М. Наука, 1983 г.

3. Гольдин Л.Л., Новикова Г.И. "Введение в квантовую физику".М. Наука, 1988 г.

4. Матвеев А.Н. "Атомная физика" М. Высшая школа 1989 г.

5. Ландау Л.Д., Лифшиц Е.М. "Квантовая механика" М. Наука 1974 г.

6. Соколов А.А., Тернов Н.М., Жуковский В.Ч. "Квантовая механика" М. Наука 1979 г.

7. Фок В.А. "Начала квантовой механики" М Наука 1976 г.

8. Горяга Г.И. "Конспект лекций по атомной физике".М. Наука, 1985 г.

9. Киттель Ч. "Введение в физику твердого тела" (перевод с американского издания) М. Наука, 1978 г.

10. Бонч-Брусевич В.Л. "Физика полупроводников" М. Наука 1977 г.

11. Шиллинг Г. "Статистическая физика в примерах".М. МИР 1976 г.

12. Киреев П.С. "Физика полупроводников" М. Высшая школа, 1975 г.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: