Законы механики, сформулированные Ньютоном

 

Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы.

Ученые-науковеды едины во мнении, что основу любой физической теории составляют три элемента, основным из которых является совокупность физических величин, с помощью которых описываются объекты данной теории. В механике Ньютона это координаты, импульсы, энергия, силы.

Ньютон впервые создал единую механику всех земных и небесных тел, с общими для них законами инерции, динамики, действия и противодействия, а также взаимного тяготения. Механистическая картина мира напоминала часы: любое событие однозначно определяется начальными условиями, задаваемыми абсолютно точно. В таком мире нет места случайности. В нем возможен демон Лапласа - существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только предсказать будущее, но и до мельчайших подробностей восстановить прошлое.

Непосредственно законы механики, сформулированные Ньютоном, относятся к физическому телу, размерами которого можно пренебречь, материальной точке. Но любое тело макроскопических размеров всегда можно рассматривать как совокупность материальных точек и, следовательно, достаточно точно описать его движения.

Поэтому в современной физике под классической механикой понимают механику материальной точки или системы материальных точек и механику абсолютно твердого тела.

Основания механики Ньютона составляют три закона и два положения относительно природы пространства и времени.

Первый закон Ньютона. Материальная точка в отсутствие действия на нее сил или при взаимном уравновешивании последних находится в состоянии покоя или равномерного прямолинейного движения.

Второй закон Ньютона. Скорость изменения импульса р материальной точки равна действующей на нее силе F, т.е.

 

 = F, или = F, или а = ,

 

где m, v, a, t являются символьными обозначениями соответственно массы, вектора скорости, вектора ускорения и времени.

Третий закон Ньютона. Две материальные точки действуют друг на друга с силами F1 и F2, которые численно равны и направлены в противоположные стороны вдоль прямой, соединяющей эти точки: F1 = F2.

Три закона Ньютона предполагают определенную природу пространственных и временных промежутков. Выполняются они не во всех, а лишь в так называемых инерциальных системах отсчета.

Отметим, что законы ньютоновской классической механики являются обратимыми. Это своим следствием имеет тот факт, что в классической динамической системе всегда можно, варьируя начальные условия, привести систему в определенное, «нужное», заранее выбранное состояние.

Для расчета движения должна быть известна зависимость взаимодействия между частицами от их координат и от скоростей. Тогда по заданным значениям координат и импульсов всех частиц системы в начальный момент времени второй закон Ньютона позволяет однозначно определить координаты и импульсы в любой последующий момент времени. Это позволяет утверждать, что координаты и импульсы частиц системы полностью определяют ее состояние в механике. Любая механическая величина, представляющая для нас интерес (энергия, момент импульса и т.д.), выражается через координаты и импульс.

Таким образом, определяются все три элемента фундаментальной теории, какой является классическая механика.

 

 



Заключение

 

Исаак Ньютон доказал существование тяготения как универсальной силы - силы, которая одновременно заставляла камни падать на Землю и была причиной замкнутых орбит, по которым планеты вращались вокруг Солнца. Заслуга Ньютона была в том, что он соединил механистическую философию Декарта, законы Кеплера о движении планет и законы Галилея о земном движении, сведя их в единую всеобъемлющую теорию.

Закон всемирного тяготения не только завершил гелиоцентрическое представление о Солнечной системе, но и дал научную основу для объяснения большого числа процессов, происходящих во всей Вселенной, в том числе физических и химических процессов, став основой физической картины мира.

Механистическая картина мира основывалась на следующих принципах: связь теории с практикой; использование математики; эксперимент реальный и мысленный; критический анализ и проверка данных; главный вопрос - как, а не почему; детерминированность и обратимость траекторий.

Стимулирующее воздействие на естествознание новых потребностей техники привело к тому, что в начале ХХ в. началась новейшая революция в естествознании, прежде всего, в физике, где был сделан целый ряд ошеломляющих открытий, разрушивших всю ньютоновскую космологию. Сюда относятся открытия радиоактивного распада Э. Резерфордом, светового давления П.Н. Лебедевым, создание теории относительности А. Эйнштейном, изобретение радио А.С. Поповым, введение идеи кванта М. Планком.

Обращаясь к современной науке, нужно отметить, что даже беглое сравнение ее и науки предшествующих эпох обнаруживает разительные перемены. Ньютон, как ученый классической эпохи, вряд ли бы принял идеи и методы, например, квантовомеханического описания, поскольку он считал недопустимым включать в теоретическое описание и объяснение ссылки на наблюдателя и средства наблюдения. Такие ссылки воспринимались бы в классическую эпоху как отказ от идеала объективности. Вместе с тем, механика Ньютона и по сей день не потеряла своего значения, только стало ясно, что существуют границы ее применимости.

 

 



Список использованной литературы

 

.Идеи и наш мир: Великие концепции прошлого и настоящего / Под ред. Р. Стюарта. - М.: ББМ АО, ТЕРРА - книжный клуб, 1998. - 224 с.

.Кефели И.Ф. История науки и техники. - СПб.: Балт. гос. техн. ун-т, 1995. - 170 с.

.Ньютон и философские проблемы физики XX века. - М.: Наука, 1991. - 205 с.

.Родякин С.В., Ситников А.Н. Основные предпосылки и идеи становления и развития классической механики Галилея и Ньютона // Философия науки (научное издание по философии, методологии и логике естественных наук). - 2003. - №1. - С. 45-51.

.Серополова Е.Я. Межпредметные связи и формирование естественнонаучных понятий при обучении физике в основной школе // Физика в школе. - 2007. - №3. - С. 22-27.

.Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. - М.: Гардарина, 1996. - 400 с.

.Тяготение. От Аристотеля до Эйнштейна / В.Д. Захаров. - М.: Бином. Лаборатория знаний, 2003. - 278 с., илл.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: