Подведение итога урока

Решение линейных неравенств с одной переменной

На данном уроке будет рассмотрена тема: «Решение линейных неравенств». Вы узнаете, что такое эквивалентность, равносильность. На нескольких примерах вы убедитесь, что решать неравенство нужно, строго соблюдая эквивалентные преобразования.

Пример №1

Решение равносильных или эквивалентных неравенств.

Линейное неравенство имеет вид: или , где х – искомая величина,

a и b – конкретные числа. В линейном неравенстве х находится в первой степени.

Пример № 1.

Решить неравенство:

Методом подбора можно найти много решений этого неравенства. Но решить неравенство – это значит найти множество его частных решений. Вспомним отличие неравенства от уравнения. При решении уравнения можно сделать проверку, подставив найденное решение. В неравенстве такого сделать нельзя.

Решение: Применим эквивалентные преобразования.

1. Переносим числовое значение из одной части неравенства в другую с противоположным знаком:

2. Обе части неравенства делим на 2, получаем: ;

Ответ: или

Вывод: Эквивалентные преобразования – это:

1. перенос в другую сторону любого члена неравенства,

2. умножение или деление обеих частей неравенства на одно и то же число.

Пример № 2

Решить неравенство: .

Решение. Пользуемся только эквивалентными преобразованиями.

Выполняем приведение подобных членов:

Умножаем обе части неравенства на 15. Получаем эквивалентное неравенство: . Умножаем обе части неравенства на -1, но смысл неравенства поменяется на противоположный: .

Ответ: .

Вывод: решать неравенство можно, только соблюдая эквивалентные преобразования.

Подведение итога урока

На данном уроке была рассмотрена тема: «Решение линейных неравенств». Вы узнали, что такое эквивалентность, равносильность. Вы вспомнили, что решить неравенство – это значит найти все его бесчисленное множество решений. На нескольких примерах вы убедились, что решать неравенство нужно, строго соблюдая эквивалентные преобразования.

 




double arrow
Сейчас читают про: