По опасности поражения людей электрическим током

Существенное влияние на электробезопасность производственных помещений оказывает окружающая среда. Правила устройства электроустановок (ПУЭ) различают помещения по степени опасности поражения в них людей электрическим током:

1. Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность поражения.

2. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:

а) сырости (относительная влажность воздуха длительно превышает 75 %) или токопроводящей пыли (оседающей на проводах, проникающей внутрь аппаратов и т. п.);

б) токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.);

в) высокой температуры (длительное время превышает +35 0С);

г) возможности одновременного прикосновения людей к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам и т. п., с одной стороны, а с другой – к металлическим корпусам электрооборудования.

3. Помещения особо опасные, характеризующиеся наличием создающих особую опасность поражения условий:

а) сырости (относительная влажность близка к 100 %; потолок, стены, пол и предметы покрыты влагой);

б) химически активной или органической среды (длительно содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию и токоведущие части);

в) двух или более условий повышенной опасности одновременно.

Помимо этого, следует учитывать следующее:

1. Территории размещения наружных электроустановок (на открытом воздухе, под навесом, за сетчатыми ограждениями) приравниваются к особо опасным помещениям.

2. В ряде нормативных документов выделяются в отдельную группу работы в особо неблагоприятных условиях (в сосудах, аппаратах, котлах и других металлических емкостях с ограниченной возможностью перемещения, а также выхода их них оператора). В этих условиях опасность поражения работника электричеством больше и, соответственно, уровень требований безопасности строже, чем в особо опасных помещениях.

Условия производства работ предъявляют определенные требования к питанию таких потребителей, как электроинструмент, светильники местного освещения, переносные светильники.

В помещениях с повышенной опасностью и особой опасностью такие потребители должны питаться от напряжения не более 50 В (36), а в особо неблагоприятных условиях – не более 12 В. Подробно эти вопросы рассмотрены в ПУЭ.


20. Методы защиты от прикосновения к токоведущим частям, контроль изоляции.

Электроустановки и их части должны быть выполнены таким образом, чтобы работающие не подвергались опасным и вредным воздействиям электрического тока и электромагнитных полей, и соответствовать требованиям электробезопасности. Требования (правила и нормы) электробезопасности к конструкции и устройству электроустановок должны быть установлены в стандартах Системы стандартов безопасности труда, а также в стандартах и технических условиях на электротехнические изделия.

Требования безопасности при эксплуатации электроустановок на производстве должны устанавливаться нормативно-технической документацией по охране труда, утвержденной в установленном порядке.

Для обеспечения защиты от случайного прикосновения к токоведущим частям необходимо применять следующие способы и средства:

-защитные оболочки;

-защитные ограждения (временные или стационарные);

-безопасное расположение токоведущих частей;

-изоляцию токоведущих частей (рабочую, дополнительную, усиленную, двойную);

-изоляцию рабочего места;

-малое напряжение;

-защитное отключение;

-предупредительную сигнализацию, блокировку, знаки безопасности.

Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, применяют следующие способы:

-защитное заземление;

-зануление;

-выравнивание потенциала;

-система защитных проводов;

-защитное отключение;

-изоляцию нетоковедущих частей;

-электрическое разделение сети;

-малое напряжение;

-контроль изоляции;

-компенсация токов замыкания на землю;

-средства индивидуальной защиты.

Технические способы и средства применяют раздельно или в сочетании друг с другом так, чтобы обеспечивалась оптимальная защита.

К работе в электроустановках должны допускаться лица, прошедшие инструктаж и обучение безопасным методам труда, проверку знаний правил безопасности и инструкций в соответствии с занимаемой должностью применительно к выполняемой работе с присвоением соответствующей квалификационной группы по технике безопасности и не имеющие медицинских противопоказаний.

Для обеспечения безопасности работ в действующих электроустановках должны выполняться следующие организационные мероприятия:

-назначение лиц, ответственных за организацию и безопасность производства работ;

-оформление наряда или распоряжения на производство работ;

-осуществление допуска к проведению работ;

-организация надзора за проведением работ;

-оформление окончания работы, перерывов в работе, переводов на другие рабочие места;

-установление рациональных режимов труда и отдыха.

Контроль изоляции обязателен к применению в электрических сетях изолированных от земли, т.к. от электроустановок работающих в режиме изолированной нейтрали требуется повышенная надежность энергоснабжения и по условиям электропоражения они относятся к числу с повышенной опасностью. Поэтому организация контроля изоляции в таких электрических установках является приоритетной задачей.

В электроустановках и электрических сетях, которые изолированные от земли, условия безопасности и надежности определяются состоянием контроля изоляции, ее качеством, сопротивлением и емкостью.

Для того, чтобы обеспечить надлежащий уровень сопротивления контроля изоляции в электросети или определенной электроустановке, в правилах предполагается ведение постоянного автоматического контроля изоляции, осуществляемого устройствами контроля изоляции.

Основной задачей устройства контроля изоляции является измерение сопротивления изоляции сетей под напряжением и при включенных потребителях. Принцип действия, заключается в оценке результатов измерения сопротивления изоляции и сравнивания с заданной установкой, соответствующей условиям электробезопасности, и, в случае нарушения, включается сигнализация или подается команда на отключающий аппарат.


21. Назначение, устройство и принцип действия защитного заземления электроустановок.



Защитное заземление

В качестве критериев безопасности при проектировании способов и средств защиты от поражения током приняты наибольшие допустимые для человека значения напряжений прикосновения и токов, протекающих через тело человека.

Защитное заземление и защитное зануление являются наиболее распространенными, достаточно эффективными и простыми мерами защиты от поражения электрическим током при появлении напряжения на металлических нетоковедущих частях (металлические корпуса оборудования).

Назначение защитного заземления –снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами.

Защитное заземление достигается путем уменьшения потенциала на заземленном оборудовании (за счет уменьшения сопротивления заземления), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования.

На рисунок 2.1 показана принципиальная электрическая схема защитного заземления и потенциальная кривая, отражающая закон распределения потенциалов на поверхности земли вокруг одиночного заземлителя.

 

 

 

Рисунок 2.1 – Принципиальная схема защитного заземления и потенциальная кривая

            

Если же корпус электроустановки заземлен, то тело человека и заземлитель оказываются включенными параллельно (рисунок 2.2).

     

 

 

 

Рисунок 2.2 – Включение человека в цепь тока

при наличии заземления электроустановки

 

Допустим, что общий ток I 0 полностью определяется активным сопротивлением изоляции. Он распределяется по двум параллельным ветвям обратно пропорционально их сопротивлению так, что .

Приняв R3 = 10 Ом, получим, что в данном примере заземление обеспечивает уменьшение тока при его прохождении через тело человека в 100 раз (1000/10).

Однако кроме этого защитное действие заземления проявляется также в выравнивании электрических потенциалов между участком земли, на котором стоит человек, и корпусом.

Область применения защитного заземления – все электроустановки напряжением выше 1000 В, а также электроустановки напряжением до 1000 В с изолированной нейтралью и электроустановки напряжением до 1000 В с глухозземленной нейтралью в качестве дополнения к занулению. В последнем случае заземление без зануления категорически запрещено.

Заземляющее устройство конструктивносостоит из заземлителя (совокупности электродов, соединенных между собой, и находящихся в непосредственном соприкосновении с землей) и проводников, соединяющих заземляемые части электроустановки с заземлителем. На практике используются групповые заземлители (параллельное соединение одиночных заземлителей). Групповой заземлитель обладает меньшим сопротивлением растеканию тока и обеспечивает лучшее выравнивание потенциалов по поверхности земли.

Правила устройства электроустановок предписывают обязательное использование помимо искусственных заземлителей, предназначенных исключительно для заземления, естественных заземлителей (находящихся в земле металлических предметов иного назначения). В качестве естественных заземлителей могут использоваться проложенные в земле водопроводные и другие металлические трубы (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов); металлические и железобетонные конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей и др.

Для искусственных заземлителей применяются обычно вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные прутки (диаметром 10…12 мм и длиной 2…5 м) или угловую сталь (сечением 40×40 или 60×60 мм и длиной 2,5…3,0 м). Для соединения вертикальных электродов между собой, а также в качестве самостоятельного горизонтального электрода применяют полосовую сталь сечением не менее 4×12 мм (или круглого сечения диаметром не менее 6 мм).

Для заземления предварительно роют траншею глубиной 700…800 мм, в нее забивают с помощью механизмов (или вручную) уголки; стальные стержни ввертывают в почву или заглубляют вибраторами. Верхние концы погруженных в землю вертикальных электродов соединяет полосой с помощью сварки (внахлестку). В таких же траншеях прокладывают и горизонтальные электроды. Ширина траншеи (рисунок 2.3) не нормируется (обычно 300…500 мм), длина траншеи зависит от числа электродов, расстояние между которыми должно быть не менее длины электрода.

Рисунок 2.3 – Размеры траншеи для заземления

 

Заземляющие проводники, т. е. проводники, соединяющие заземляемое оборудование с заземлителем, выполняется обычно из полосовой стали или прутков. Прокладка их производится по стенам и другим конструкциям на металлических опорах, штырях или крюках.

Последовательное включение заземляемого оборудования не допускается.

Соединяют заземляющие проводники между собой и с заземлителями сваркой, а с корпусами заземляемого оборудования – с помощью болтовых зажимов или сваркой. Размер болта нормируется в зависимости от тока (например, при токе до 100 А – не менее М6). Заземляющие проводники окрашиваются в черный цвет.

 


22. Назначение и принцип действия зануления электроустановок.




Защитное зануление

Применение защитного заземления в сетях с заземленной нейтралью не дает должной эффективности, так как при замыкании на нем питающего напряжения по отношению к земле напряжение достигнет значения большего или равного половине фазного (в трехфазных сетях при R3 = r 0).

В этом случае ток замыкания на землю I3 через защитное заземление R3 может быть недостаточным для срабатывания защиты.

Опасность поражения электрическим током при прикосновении к корпусу или металлическим частям оборудования, которые находятся под напряжением из-за повреждения и по другим причинам, может быть устранена быстрым отключением такой поврежденной установки от питающей сети. Эту функцию выполняет зануление.

Принцип действия зануления состоит в превращении замыкания напряжения на зануленные части оборудования в короткое замыкание источника тока (например, однофазное замыкание в трехфазных сетях) с целью образования большого тока, способного обеспечить срабатывание защиты и, тем самым, автоматически отключить поврежденную установку от питающей сети.

В качестве срабатывающей защиты могут использоваться плавкие предохранители, автоматические выключатели и др.

Для обеспечения надежной работы зануления необходимо соблюдать следующие требования:

1. Ток короткого замыкания I к 3 должен в несколько раз превышать номинальный ток I н срабатывания защиты, т. е.

I к. з > k I н ,

где k — коэффициент кратности. Для плавких предохранителей он принимается равным 3 (во взрывоопасных помещениях – 4). При использовании автоматических выключателей k > 1,25 (для автоматов с номинальным током выше 100 A) и k > 1,4 (для автоматов с номинальным током до 100 A).

2. Полная проводимость защитного проводника должна быть не менее 50 % проводимости фазных проводов,

3. Запрещается установка в нулевой защитный проводник предохранителей и выключателей (чтобы обеспечить непрерывность цепи зануления).

4. Обязательно применение повторного заземления нулевого проводника (для уменьшения опасности поражения персонала током, возникающей при обрыве нулевого защитного проводника).

Каждое повторное заземление  должно иметь сопротивление не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Эквивалентное сопротивление току всех повторных заземлений не должно превышать 5, 10 или 20 Ом при напряжениях в сети соответственно 660/380, 380/220 и 220/127 В, а каждого заземления – не более 15, 30 и 60 Ом соответственно.

5. Зануление однофазных потребителей должно осуществляться специальным проводником (или жилой кабеля), который не может одновременно служить проводником для рабочего тока.

Зануление применяется в трехфазных четырехпроводных сетях напряжением до 1000 В с заземленной нейтралью (рисунок 2.4), в сетях постоянного тока (если средняя точка источника заземлена) и в однофазных сетях переменного тока с заземленным выводом.

Для оценки технического состояния зануления не реже I раза в 6 месяцев, а в сырых помещениях – I раза в 3 месяца, проводят внешний осмотр нулевых защитных проводников и мест их присоединения к магистрали и электрооборудованию. Кроме того, при капитальных и текущих ремонтах оборудования, но не реже I раза в год, с помощью омметров М-372 измеряют сопротивления зануляющих проводников

                                 

.

 

Рисунок 2.4 – Схема защитного зануления электроустановок:

а –  трехфазного электроприемника; б –  осветительной арматуры; в –  одновременное зануление и заземление электроустановки; где: 1 –  заземлитель нейтрали трансформатора, 2 –  нейтраль трансформатора, 3 –  обмотка трансформатора, 4 –  зануление корпуса трансформатора, 5 –  отключающее устройство электроустановки, 6 –  электроустановка, 7 –  плавкая вставка, 8 –  нулевой защитный проводник, 9 –  выключатель, 10 –  фазный провод, 11 –  нулевой рабочий провод, 12 –  нулевой защитный проводник, 13 –  корпус светильника, 14 –  повторное заземление нулевого рабочего провода, 15 –  отключающий аппарат, 16 –  электроустановка, 17 –  заземляющий проводник, 18 –  заземлитель, ф – фазные провода, н –  нулевой рабочий провод

В качестве нулевых защитных проводников могут быть использованы: металлические конструкции зданий (фермы, колонны), а также арматуры железно-бетонных строительных конструкций.

Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения электрическим током людей и животных. В электроустановках напряжением до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.

Нулевым рабочим проводником (N) в электроустановках с напряжением до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока.

Совмещенным нулевым рабочим и защитным проводником (PEN) в электроустановках с напряжением до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников.

Для уменьшения опасности поражения электрическим током выполняют повторное заземление нулевого провода или присоединение зануленных корпусов к заземлителю, однако полностью устранить опасность поражения током такими мерами не удается. В соответствии с требованиями ПУЭ в сети с напряжением 380 В сопротивление повторного заземления нулевого провода не должно превышать 30 Ом.

Повторное заземление нулевого провода на воздушных линиях с напряжением 0,4 кВ, выполняется путем подсоединения выпуска арматуры верхнего конца железобетонной опоры воздушной линии к нулевому проводу сети.

Назначение повторного заземления нулевого провода заключается в усилении основного нуля подстанции, а также повышении безопасности потребителей при обрыве нулевого провода в сети. В каждом случае цепь тока при обрыве фазы замыкается через повторное заземление нулевого провода. Повторное заземления выполняется на опорах ввода тока в здание, где используется зануление оборудования, а также через каждые 200 м, поскольку повторное зануление объединено с горизонтальным, которое должно повторятся через 120 м, а также на вводах в общественные здания.
23. Молниезащита зданий и сооружений





double arrow
Сейчас читают про: