Раздел 2. Физика макромира

 

3. Механическая картина мира

Первая научная картина мира была построена в 18 в. трудами Коперника, Галилея, Кеплера, Ньютона и их последователей, среди которых тоже было немало выдающихся математиков.

Замена небесных сфер Аристотеля кеплеровым движением планет по эллиптическим орбитам выдвинула на передний план вопрос о силах, удерживающих планеты на орбитах. Французский философ и математик Р. Декарт (1596–1650) предположил, что все пространство между телами заполнено тончайшей материей. Вихри этого вещества удерживают планеты на их орбитах, а все взаимодействия передаются путем прямого контакта.

В конце 1600-х годов в научных кругах Англии стали обсуждаться альтернативные теории тяготения. Поскольку было известно, что свет ослабляется пропорционально квадрату расстояния, несколько английских ученых, включая Э. Галлея (1656–1743), Р. Гука (1635–1702) и К. Рена (1632–1723), предположили, что могла бы существовать некая подобная сила взаимного притяжения тел. Ни один из них, однако, не дал математического решения этой проблемы.

В 1684 Галлей посетил И. Ньютона (1643–1727), чтобы обсудить проблему тяготения, и, увидев, что тот близок к ее решению, настоял на ускорении работ. Следующие три года Ньютон при поддержке Галлея почти непрерывно трудился над этой проблемой. Объединив исследования Галилея над падающими на Земле телами и кеплеровы законы планетных движений, Ньютон создал строгую теорию тяготения, действительно объединившую Солнце, Землю и планеты в единую систему.

Ньютон изложил свои открытия в Математических началах натуральной философии (Philosophiae naturalis principia mathematica, 1687). Все наблюдаемые в Солнечной системе явления выводились в книге Ньютона с математической точностью из нескольких основных принципов и закона всемирного тяготения.

Книга I – математическое описание движения свободного тела под влиянием действующих на него сил – утверждает новые принципы механики. Она начинается с определения того, что теперь называют инерцией, массой и импульсом, а затем формулирует три знаменитых ньютоновых закона движения.

Книга II – о движении тел в среде с сопротивлением – в основном опровергает теорию вихрей Декарта.

В Книге III Ньютон применяет свою теорию гравитации фактически ко всем телам Солнечной системы – к планетам, Луне и другим спутникам, к кометам, – для которых имелись точные наблюдения.

Неразрешимое противоречие между понятием о тяготении и действием сил на расстоянии крайне затрудняло распространение теории Ньютона. Тем не менее, в собственной стране он прошел путь от одинокого эксцентричного профессора Тринити-колледжа в Кембридже до президента Лондонского королевского общества (1703–1727). Хотя и медленно, его математические теории пускали корни.

Сам Ньютон не мог объяснить особенностей движения всех членов Солнечной системы. Невозможно было точно аналитически решить задачу о движении уже трех взаимно притягивающихся тел. Даже приближенное ее решение требовало многих месяцев и даже лет кропотливых вычислений. Поколение талантливых континентальных, в первую очередь французских, математиков – таких, как Алекси Клод Клеро (1713–1765), Жан д'Аламбер (1717–1783), Леонард Эйлер (1707–1783), Жозеф Луи Лагранж (1736–1813) и Пьер Симон Лаплас (1749–1827), – успешно разрешило, в большей или меньшей степени, ряд проблем, касающихся движения тел в Солнечной системе, применяя и развивая ньютонову теорию.

Кеплера законы - эмпирические законы, описывающие движение планет вокруг Солнца. Установлены И. Кеплером (J. Kepler) в нач. 17 в. на основе наблюдений положений планет относительно звёзд[16].

Первый К. з. Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

Второй К. з. Площади, описываемые радиусами-векторами планет, пропорциональны времени.

Третий К.з. Квадраты периодов обращений относятся как кубы их средних расстояний от Солнца.

Первые два К. з. были опубликованы в 1609, третий - в 1619. К. з. сыграли важную роль в установлении И. Ньютоном закона всемирного тяготения. Решение задачи о движении материальной точки, взаимодействующей по этому закону с неподвижной центральной точкой (невозмущённое кеплеровское движение), приводит к формулировке обобщённых К. з.

1. В невозмущённом движении орбита движущейся точки есть кривая второго порядка, в одном из фокусов которой находится центр силы притяжения.

2. В невозмущённом движении площадь, описываемая радиусом-вектором точки, изменяется пропорционально времени.

3. В невозмущённом эллиптическом движении двух точек произведения квадратов времён обращений на суммы масс центральной и движущейся точек относятся как кубы больших полуосей их орбит:

 

,                                        (2.1)

 

где Т1 и Т2 - периоды обращения точек с массами m1 и m2, движущихся вокруг центральной точки с массой m0 по эллипсам с большими полуосями a1 и а2 соответственно.

Третий закон, в частности, позволяет приближённо определять массы планет, обладающих спутниками. Пусть спутник с массой m2 обращается по эллипсу с большой полуосью а2 вокруг планеты с массой m1, которая, в свою очередь, движется вокруг Солнца по эллиптической орбите с большой полуосью a1. Тогда если из наблюдений известны значения a1 и а2, а также величины периодов обращений планеты вокруг Солнца (Т1) и спутника вокруг планеты (Т2), то при условии m1>m2 из третьего закона можно определить величину m1 в единицах массы Солнца m0:

.                                          (2.2)

Были научно объяснены формы орбит планет солнечной системы. С тех пор протяженность мира увеличилась на много порядков величины, но простота и ясность первой научной картины завораживает, Хотя в начале, надо признать, там тоже хватало забот: и внутринаучная конкуренция, и церковь…. Да и сама механика была построена логично и точно не сразу. Она все время улучшалась трудами талантливых исследователей. От уравнений Ньютона до уравнений Гамильтона прошло немало лет.

Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год)[1][2].

Первый закон Ньютона

Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции. Инерция — это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность — это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

Современная формулировка

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow