Вопрос 54.Размножение - универсальное свойство живого, обеспечивающее материальную непрерывность в ряду поколений. Эволюция размножения, формы размножения

Размножение – это способность организмов производить себе подобных особей того же вида. Существует два типа размножения: половое и бесполое.
Древнейшим способом размножения на Земле было бесполое размножение.

Бесполое размножение.

Бесполое размножение происходит без образования специальных клеток, в нём участвует один организм, одна особь, при этом размножении образуются идентичные потомки. Единственным источником генетической изменчивости являются случайные мутации. Цитологической основой бесполого размножения является митоз. Молекулярной основой бесполого размножения является репликация ДНК. Бесполое размножение у различных живых организмов может происходить по-разному. Формы бесполого размножения:
1. Почкование – это форма бесполого размножения при которой новая особь образуется в виде выростов (почки) на теле родительской особи, а затем отделяется от неё и превращается в самостоятельную особь (гидра, дрожжи).
2. Фрагментация – это разделение особи на две или более частей, каждая из которых растёт и образуется отдельная особь (высшие растения, губка, дождевой червь).
3. Образование спор. Спора – это одноклеточная репродуктивная единица, состоящая из ядра и небольшого количества цитоплазмы под плотной оболочкой. Из споры образуется новая особь (низшие растения).
4. Деление. Бинарное деление клетки на две части. Ядро родительской особи один или несколько раз делится митозом, при этом образуется два или несколько дочерних ядер. Каждое из них окружается цитоплазмой и развивается в самостоятельный организм.
5. Шизогония – это множественное деление клетки. Сначала в клетке многократно делится ядро, затем вокруг каждого ядра обособляется участок цитоплазмы, который окружается плазматической мембраной. Затем происходит распад на отдельные клетки (малярийный плазмодий).
6. Вегетативное размножение. Осуществляется формирование дочернего организма из группы клеток материнского организма. У растений это размножение происходит за счёт вегетативных органов: корневищ, луковиц, клубней, усов.
В результате бесполого размножения образуются генетически идентичные особи. Скорость размножения очень высокая и в постоянных условиях организма быстро захватывают экологическую нишу.
Половое размножение.

Появилось половое размножение более 3 млрд. лет назад. Сущность полового размножения в перекомбинации генетического материала родительских особей. В результате дочерние особи становятся более разнообразными, и естественный отбор выбирает из них наиболее приспособленные. При половом размножении потомство получается в результате слияния гаплоидных клеток – гамет. При оплодотворении образуется зигота. Из которой развивается новый организм.
Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признак обоих родительских организмов.
Гаметы гаплоидны, они содержат половинный набор хромосом и образуются в результате мейоза.
Одной из модификаций полового размножения является партеногенез.
Партеногенез – это процесс, при котором женская гамета развивается в новую особь без оплодотворения (встречается у животных (пчёлы) и растений). Преимущество в том, что увеличивается скорость размножения.

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве.

Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости.














Вопоос 37

У человека П.Г. Светлов выделил 3 критических периода: 1) имплантация (6-7-е сутки после оплодотворения яйцеклетки); 2) плацентация (окончание 2-ой недели беременности); 3) перинатальный период (роды). Последний период отличается резким изменением в организме характера кровообращения, газообмена, питания, выделения и др.

Неблагоприятные воздействия среды в течение критических периодов развития зародыша могут вызвать отклонения в развитии органа. Такие отклонения в развитии органа, приводящие к функциональным расстройствам, называются уродствами, или пороками развития. Факторы среды, вызывающие формирование уродств, или пороков развития, названы тератогенными. Тератогенные факторы включают лекарственные средства, наркотики и многие другие вещества. Тератогенным считается химический, физический или биологический фактор, отвечающий следующим критериям.

1. Доказана связь между действием фактора и формированием порока развития.

2. Эпидемиологические данные подтверждают эту связь.

3. Действие повреждающего фактора совпадает с критическим периодами внутриутробного развития.

4. При редком воздействии повреждающего фактора характерные пороки развития формируются редко.

Основные группы тератогенных факторов.

1. Лекарственные средства и химические вещества.

2. Ионизирующее излучение.

3. Инфекции.

4. Метаболические нарушения и вредные привычки у беременной.

Вопрос 36.Мейоз – это особое деление соматических клеток половых желез, которое приводит к образованию гамет. Мейоз состоит из двух делений – мейоз I и мейоз II. Каждое деление имеет четыре фазы: профаза I и профаза II, метафаза I и метафаза II, анафаза I и анафаза II, телофаза I и телофаза II

 Самой сложной является профаза мейоза I. Она имеет 5 стадий:

 1- лептотена: хроматин спирализуется, образуются тонкие хроматиновые нити, которые начинают движение друг к другу центромерными участками; генетический материал – 2n2chr4c.

 2 – зиготена: начинается конъюгация коротких, толстых хроматиновых нитей (хромосом), которые соединяются по всей длине; генетическая информация не изменяется – 2n 2chr4c.

 3 – пахитена: гомологичные хромосомы плотно соединяются по всей длине; образуемые фигуры называют биваленты хромосом или тетрады хроматид; генетический материал можно записать так – 1n biv4chr4с; к концу стадии в области центромер начинают действовать силы отталкивания и происходит кроссинговер – обмен участками гомологичных хромосом;

 4 – диплотена: продолжают действовать силы отталкивания, но хромосомы остаются соединенным в области хиазм (перекрестов); содержание генетического материала сохраняется – 1n biv 4chr4с;

 5 – диакинез: заканчивается спирализация хромосом, исчезают ядерная оболочка и ядрышко; биваленты хромосом, соединенные своими концами, выходят в цитоплазму и движутся к центру клетки; нити веретена деления прикрепляются к центромерам хромосом; 1n biv 4chr4c.

 В метафазе мейоза I биваленты располагаются по экватору клетки; четко видны отдельные хромосомы; генетический материал – 1n biv 4chr4с.

 Анафаза I: биваленты распадаются на отдельные гомологичные хромосомы, которые расходятся к полюсам клетки; каждая хромосома содержит 2 хроматиды; содержание генетического материала на каждом полюсе клетки – 1n2chr2с; произошла редукция (уменьшение) числа хромосом – из диплоидного набор хромосом стал гаплоидным. Поэтому первое деление мейоза называется редукционным.

 В телофазу мейоза I происходит цитокинез, и образуются две дочерние гаплоидные клетки – 1n2chr2c; в отличие от митоза в этой фазе не происходит деспирализации хромосом.

 После мейоза I наступает интеркинез – короткий промежуток между двумя делениями и начинается мейоз II. Репликация ДНК не происходит.

 Второе деление мейоза не отличается от митоза, но в профазе II не происходит спирализации хромосом (1n2chr2c), а в анафазе II к полюсам клетки отходят хроматиды (дочерние хромосомы). Каждая дочерняя клетка получает набор генетической информации1n1chr1с. Гаплоидный набор хромосом сохраняется. Второе деление мейоза называется эквационным, или уравнительным.

 Из одной материнской диплоидной клетки образуются 4 клетки (гаметы) с гаплоидным набором хромосом.

 Значение мейоза:

 - это механизм образования гамет;

 - поддерживает постоянство числа хромосом при половом размножении;

 - обеспечивает комбинативную изменчивость в результате кроссинговера, независимого расхождения хроматид и хромосом, при образовании гамет.

 

Вопрос 39.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: