Вопрос 2 Автоматия и проводящая система сердца. Морфофункциональная характеристика узлов автоматии и проводящей системы сердца, природа автоматии и ее функциональная роль

АВТОМАТИЯ

Автоматия — это способность к самовозбуждению. Доказано, что у большинства жи-вотных ее природа — миогенная, т. е. она обусловлена наличием особого механизма, лока-лизованного в миоцитах.

Клетки, способные к автоматической генерации потенциала действия, образуют узлы автоматии (водители ритма, или пейсмекеры). У млекопитающих выделяют три узла автоматии:

1) синоатриальный узел, расположенный в районе венозного входа в правом предсердии (узел Кис-Фляка). Именно этот узел является реальным водителем ритма в норме.

2)Атриовентрикулярный узел (Ашоффа-Тавара), который расположен на границе пра вого и левого предсердий и между правым предсердием и правым желудочком. Этот узел состоит из трех частей: верхней, средней и нижней.

В норме этот узел не генерирует спонтанные потенциалы действия, а «подчиняется» синоатриальному узлу и, скорее всего, играет роль передаточной станции, а также осуще-ствляет функцию «атриовентрикулярной» задержки.

3)Волокна Пуркинье—это конечная часть пучка Гиса, миоциты которой расположены в толще миокарда желудочков. Они являются водителями 3-го порядка, их спонтанный ритм — самый низкий, поэтому в норме являются лишь ведомыми, участвуют в процессе прове дения возбуждения по миокарду.

Синоатриальный узел представляет собой соединительнотканный остов, в котором расположены специализированные мышечные клетки — в основном так называемые Р-клетки, собранные в агрегаты. Каждая из клеток этого узла способна к автоматии — благодаря высокой проницаемости для ионов натрия, и способна генерировать медленную диастолическую деполяризацию. До сих пор остается неясной причина, порождающая высокую проницаемость для ионов натрия и те особенности электрической активности, которые и приводят к генерации спонтанного потенциала действия.

Единый пейсмскерный ритм строится на основе интегративного взаимодействия всех элементов гетерогенного пейсмекера.

В других узлах автоматии преобладают миоциты промежуточного типа (атриовентрикулярный узел) или миоциты, получившие название «волокна Пуркинье». Возможно, что эти две популяции клеток не способны генерировать часто ПД (атриовентрикулярный узел генерирует до 30—40 ПД в минуту, волокна Пуркинье — до 20—30 в минуту), поэтому они в норме не являются водителями ритма.

Роль водителя ритма первого порядка — синоатриального узла — огромна. Все регулирующие воздействия, меняющие ритм сердечной деятельности, оказывают свое влияние на сердце посредством воздействия на водитель ритма первого порядка. Если этот водитель «выходит» из работы, то ни симпатическая, ни парасимпатическая системы сами по себе не смогут запустить деятельность сердца. В случае, когда синоатриальный узел повреждается и при этом человеку успевают оказать квалифицированную медицинскую помощь, больному вживляют стимулятор, задающий самостоятельно ритм для работы сердца. Благодаря такому способу удалось сохранить жизнь многих пациентов.

В ней выделяют следующие узлы и пути:

1. Синоатриальный узел (Кейс-Флека). Он расположен в устье полых вен, т.е. венозных синусах.

2. Межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке.

3. Атриовентрикулярный узел (Ашофф-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия.

4. Атриовентрикулярный пучок или пучок Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородке. Затем делится на две ножки – правую и левую. Они образуют ветви в миокарде желудочков.

5. Волокна Пуркинье. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков (рис).

Синоатриальный узел образован преимущественно Р-клетками. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости кардиомиоцитов, миокард является функциональным синцитием. Т.е. сердечная мышца реагирует на раздражение как единое целое.

Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (т.е. делал перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту. Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриальный. На основании опытов Станниуса и Гаскелла был сформулирован принцип убывающего градиента автоматии. Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. В нормальных условиях синоатриальный узел подавляет автоматию нижележащих, т.к. частота его спонтанной активности выше. Поэтому синоатриальный узел называют центром автоматии I-го порядка, атриовентрикулярный II-го, а пучок Гиса и волокна Пуркинье III-го.

Вопрос 3 Виды гипоксий, или кислородной недостаточности, Острая и хроническая гипоксия. Отрицательное влияние гипоксии и комплекса факторов высокогорья на организм человека. Горная болезнь.

Гипоксия, кислородное голодание, кислородная недостаточность - состояние, возникающее при недостаточном поступлении кислорода к тканям или нарушении его утилизации в процессе биологического окисления. Гипоксия характеризуется метаболическими нарушениями, преимущественно со стороны энергетического (дефицит макроэргических соединений) и углеводного (усиление гликолиза, увеличение концентрации молочной и пировиноградной кислот в сыворотке крови) обмена, развитием метаболического ацидоза.

Виды гипоксии

Различают гипоксическую, гемическую, циркуляторную, тканевую (гистотоксическую) и смешанную формы гипоксии.

Гипоксическая гипоксия возникает вследствие снижения парциального давления кислорода во вдыхаемом воздухе или затруднения проникновения кислорода в кровь через дыхательные пути.

Гемическая гипоксия является следствием снижения количества эритроцитов в периферической крови или резкого понижения содержания гемоглобина в эритроцитах.

Циркуляторная гипоксия обусловлена нарушением функций сердечно-сосудистой системы (ослаблением работы сердца, спазмом сосудов) и ухудшением вследствие этого поступления кислорода к тканям.

Тканевая гипоксия возникает в связи с ухудшением утилизации кислорода при нарушениях процессов биол. окисления и связана с повреждением окислит, ферментных систем, мембранных структур клетки и др.

В ответ на гипоксию развивается адаптация, обусловливающая возможность нормальной жизнедеятельности организма в условиях хронического кислородного голодания. При истощении компенсаторных процессов, развивающихся при гипоксии, происходит срыв адаптации, сопровождающийся нарушением ряда физиологических функций и метаболических реакций. Гипоксия— ведущий патогенетический фактор повреждения плода и новорождённого при ряде акушерских и экстрагенитальных заболеваний беременных, обусловливающий высокую частоту перинатальной патологии, мертво-рождаемости и ранней детской смертности. Гипоксия наблюдается при поздних токсикозах беременных, приобретённых и врождённых пороках сердца, гипертонической болезни, заболеваниях лёгких (эмфизема лёгких, туберкулёз), крови (анемия), хронических инфекционных заболеваниях (токсо-плазмоз и др.), интоксикации химическими агентами, лекарств, препаратами, злоупотреблении алкоголем, курении.

Здоровый организм может оказаться в состоянии гипоксии, если потребность в кислороде (кислородный запрос) выше, чем возможность ее удовлетворить. Наиболее распространенными причинами возникновения такого состояния являются:

1.низкое содержание кислорода во вдыхаемом воздухе в условиях высокогорья;

2.временное прекращение или ослабление легочной вентиляции при нырянии на различную глубину;

3.возрастание потребности в кислороде при выполнении мышечной работы.

В первых двух ситуациях при сохраненной или даже сниженной потребности в кислороде уменьшается возможность его получения, тогда как при выполнении мышечной работы возможности обеспечения кислородом отстают от растущей потребности, связанной с повышенным расходом энергии.

ГОРНАЯБОЛЕЗНЬ

При подъеме на гору (более 4,5 км) возникает горная болезнь как результат низкого парциального давления кислорода. Если человек быстро поднимается на высоту, то развивается острая гипоксия. В основе явления лежит гипервентиляция, возникающая в ответ на острую гипоксию (за счет возбуждения хеморецепторов каротидного синуса), но при этом наблюдается гипокапния, т. е. вымывание углекислого газа, и поэтому импульсация с центральных хеморецепторов резко снижается, что приводит к гипопноэ. У горцев снижена чувствительность к гипоксии, их периферические хеморецепторы снижают свою чувствительность к недостатку кислорода, т. е. наблюдается своеобразная гипоксическая «глухота». Поэтому у них МОД не возрастает, не создается снижение парциального напряжения углекислого газа. Есть, конечно, и другие механизмы, позволяющие горцам адаптироваться к таким условиям. Например, у них возрастает диффузионная способность легких, увеличивается кислородная емкость крови за счет роста содержания гемоглобина, повышается способность тканей экстрагировать кислород.

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление снижается ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление = 16 мм рт. ст. (смерть), при вдыхании чистого кислорода — всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах (при использовании автономного атмосферного давления).

Билет 29


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: