Понятие надежности радиоэлектронной аппаратуры

Надежность является важнейшим показателем качества радиоэлектронной аппаратуры (РЭА). Безотказное функционирование РЭА в течение определенного интервала времени в одних случаях определяет успешность выполнения задачи, в других - качество работы, готовность к выполнению задач, экономические затраты.

Надежность - способность устройства выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования. Надежность - сложное свойство РЭА, которое в зависимости от назначения объекта, условий его применения состоит из сочетания свойств - безотказности, долговечности, ремонтопригодности и сохраняемости (ГОСТ 27002-83).

Безотказность есть свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. Наработка - это продолжительность или объем работы объекта.

Работоспособное состояние объекта такое, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и конструкторской документации. Противоположное ему неработоспособное состояние - это то, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической документации. Случайное событие, заключающееся в нарушении работоспособного состояния с переходов в неработоспособное, есть отказ. Обратный переход (возврат) к работоспособному состоянию есть восстановление.

Долговечность - это свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта. Предельное состояние - это состояние объекта, при котором его дальнейшее применение по назначению не допустимо или нецелесообразно либо восстановление его исправного или работоспособного состояния невозможно.

Как следует из определения, достижение предельного состояния может происходить в условиях, когда допустимо, выполняя ремонт, вернуть изделие в работоспособное состояния и продлить его срок службы. Тогда достижение предельного состояния еще не определяет долговечность.

Сохраняемость - это свойство объекта сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и транспортирования.

Ремонтопригодность - это свойство объекта, заключающееся в

приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений и поддержанию и восстановлению работоспособного состояния путем про ведения технического обслуживания и ремонтов. Техническое обслуживание есть комплекс операций по поддержанию работоспособности (или исправности) изделия при использовании по назначению в течении срока службы РЭА, ожидании, хранении и транспортировании. Под ожиданием понимается нахождение РЭА в состоянии готовности к использованию по назначению. Под транспортированием - перемещение (не "своим" ходом) от места погрузки до момента выгрузки. Под хранением пребывание РЭА в нерабочем состоянии в приспособленных для этого помещениях. Ремонт - это комплекс операций по восстановлению работоспособности (исправности) и восстановлению ресурса изделия.

По мере развития РЭА роль надежности как оценки качества аппаратуры возрастает, так как усложняются выполняемые аппаратурой функции, увеличивается количество элементов. Это усложнение приводит к возрастанию количества отказов и времени восстановления.

Надежность РЭА - понятие комплексное. Оно определяется принципом действия, схемой, конструкцией, технологией изготовления и условиями эксплуатации, а также надежностью элементной базы.

Методы повышения надежности можно разделить на структурные и информационные.

Структурные методы повышения надежности. Абсолютной надежности технических устройств добиться принципиально невозможно, а максимально повысить показатели их надежности реально. Повышение уровня надежности РЭА достигается, прежде всего, устранением причин, вызывающих в ней отказы, т. е. сведением к минимуму конструкторских, технологических и эксплуатационных ошибок.

Значительного повышения надежности РЭА достигают созданием новых элементов. Однако повышением надежности элементов не удается полностью решить проблему, что вызвано значительным опережением роста сложности вновь разрабатываемых РЭА. Поэтому один из путей повышения надежности РЭА - введение схемной избыточности.

Повышение надежности РЭА резервированием. Резервирование – способ повышения надежности аппаратуры, заключающийся в дублировании РЭА в целом или отдельных ее модулей или элементов. Резервирование предполагает включение в схему устройства дополнительных элементов, которые позволяют скомпенсировать отказы отдельных частей устройств и обеспечить его надежную работу. Но резервирование эффективно только в том случае, когда неисправности являются статистически независимыми. Различают следующие виды резервирования: постоянное (резервные элементы включены вместе с основным и функционируют в тех же режимах); резервирование замещением (обнаружение отказавшего элемента и замена его резервным); скользящее резервирование (любой резервный элемент может замещать любой отказавший).

Если Pc(t) – вероятность безотказной работы системы, то установка и включение параллельно нескольких таких же систем приводит к увеличению результирующей вероятности безотказной работы резервированной системы P(t), которую можно определить из выражения:

P(t) = 1 – [1-Pc(t)]m+1,

где m – число резервных систем, включенных параллельно основной.

В РЭА применяется общее (резервируются отдельные модули), и поэлементное резервирование на уровне микросхем или отдельных элементов. При одинаковом количестве резервных элементов поэлементное резервирование эффективнее общего, но требует большого числа дополнительных электрических связей.

Постоянное резервирование в РЭА производят по следующей схеме: входные сигналы поступают на n логических схем, причем n> k, где k – число логических схем в нерезервированной схеме. Выходные сигналы всех n логических схем далее подают на решающий элемент, который согласно функции решения по этим сигналам определяет значения выходных сигналов всей схемы. Функция решения – правило отображения входных состояний решающего элемента на множество его выходных состояний.

Простейший и наиболее распространенный вид функции решения – «закон большинства», или мажоритарный закон. Решающий элемент обычно называют мажоритарным элементом. Работа мажоритарного элемента состоит в следующем: на входы элемента поступают двоичные сигналы от нечетного количества идентичных элементов; выходной сигнал элемента принимает значение, равное значению, которое принимает большинство входных сигналов.

По способу включения резервных элементов функциональных устройств различают три вида резервирования: постоянное, замещением и скользящее.

При постоянном резервировании предполагают, что любой отказавший элемент или узел не влияет на выходные сигналы и поэтому его прямого обнаружения не производится. Постоянное резервирование наиболее распространено в невосстанавливаемых устройствах. Кроме того, оно является единственно возможным в устройствах, где недопустим даже кратковременный перерыв в работе.

Постоянное резервирование вводится или с помощью решающего блока, или в виде однотипных элементов или блоков, включенных последовательно, параллельно или, например, согласно законам k-кратной логики.

В качестве решающего блока можно использовать мажоритарные элементы с постоянными или переменными весами, кодирующие - декодирующие устройства и схемы из логических элементов И, ИЛИ, НЕ.

Резервирование замещением предполагает обнаружение отказавшего элемента или узла и подключение исправного. Замещение может происходить либо автоматически, либо вручную.

Резервирование замещением имеет следующие достоинства. Для многих схем при включении резервного оборудования не требуется дополнительно регулировать выходные параметры, вследствие того, что электрические режимы в схеме не меняются. Резервная аппаратура до момента включения в работу обесточена, что повышает общую надежность системы за счет сохранения ресурса электронных устройств. Имеется возможность использования одного резервного элемента на несколько рабочих.

Вследствие сложности аппаратуры для автоматического включения резерва резервирование замещением целесообразно применять к крупным блокам и отдельным функциональным частям РЭА.

При скользящем резервировании любой резервный элемент может замещать любой основной элемент. Для осуществления этого резервирования необходимо иметь устройство, которое автоматически находит неисправный элемент и подключает вместо него резервный. Достоинство такого резервирования в том, что при идеальном автоматическом устройстве будет наибольший выигрыш в надежности по сравнению с другими методами резервирования. Однако осуществление скользящего резервирования возможно лишь при однотипности элементов.

Информационные методы повышения надежности РЭА. Основное применение информационные методы находят в вычислительной технике. Реализуются они в виде корректирующих кодов. Назначение этих кодов состоит в том, чтобы обнаруживать и исправлять ошибки в РЭА без прерывания их работы.

Корректирующие коды предусматривают введение в изделия некоторой избыточности. Различают временную и пространственную избыточность. Временная избыточность характеризуется неоднократным решением задачи. Полученные результаты сравниваются, и если они совпадают, то делается вывод, что задача решена правильно. Временная избыточность вводится в РЭА программным путем.

Пространственная избыточность характеризуется удлинением кодов чисел, в которые вводят дополнительно контрольные разряды. Суть обнаружения и исправления ошибок с помощью корректирующих кодов состоит в следующем. В конечном множестве А выходных слов устройства выделяют подмножество В разрешенных кодовых слов (т. е. В Ì А). Эти слова могут появиться лишь в том случае, если все арифметические и логические операции, выполняемые РЭА, осуществляются правильно. Тогда очевидно, что подмножество А – В = С(A \ B = С) будет характеризовать запрещенные кодовые слова. Последние имеют место только при наличии ошибок.

Далее все слова на выходе устройства анализируют. Например, если слово bi относится к подмножеству разрешенных кодовых слов (т. е. b Ì B), то это означает, что процесс идет нормально; слово bi считают правильным и его можно декодировать.

Если на выходе устройства появляется запрещенное кодовое слово сi(ci Ì C), то это свидетельствует о наличии ошибки, и она фиксируется.

Для устранения обнаруженных таким образом ошибок все запрещенные кодовые слова разбиваются на группы. Каждой такой группе ставится в соответствие только одно разрешенное кодовое слово. При декодировании запрещенные кодовые слова сi автоматически заменяются разрешенными кодовыми словами из той группы, к которой принадлежит ci.

Таким образом, корректирующие коды в состоянии не только обнаруживать ошибки, но и устранять их.

Расчет надежности РЭА. Определив из ТЗ требуемую вероятность безотказной работы аппаратуры, конструктор распределяет эту вероятность по составляющим РЭА модулям, подбирает элементы с необходимыми интенсивностями отказов, выявляет потребность и глубину резервирования, принимает меры по защите аппаратуры от воздействий дестабилизирующих факторов.

Расчет надежности РЭА состоит в определении числовых показателей надежности P(t) и Тср по известным интенсивностям отказов комплектующих РЭА элементов. При этом считается, что, если выход из строя любого элемента приводит к выходу из строя всей РЭА, то имеет место последовательное включение элементов. Усредненные данные по интенсивностям отказов микросхем, электрорадиоэлементов, узлов и электрическим соединениям являются известными.

При конструировании необходимы данные об ожидаемых изменениях характеристик элементов в течение всего срока службы РЭА. Например, если разрабатывается аппаратура со сроком службы 10 лет, то необходимо предварительно в течение 10 лет, если не используется какой-либо метод ускоренных испытаний, собирать данные об изменении параметров комплектующих элементов, что в общем случае нереально, так как за это время может устареть как элементная база, так и сама разрабатываемая РЭА

Поэтому трудно ожидать совпадения реального и рассчитанного поведения системы, но расчеты надежности необходимо выполнять, так как в ТЗ на разработку всегда указываются требуемые показатели надежности.

Вероятность безотказной работы системы обычно вычисляется с использованием выражений:

Pc(t) = exp(- L(t) dt), L(t) = i(t),

где i(t) – интенсивность отказов i-го модуля, n – число модулей системы.

Модули одного иерархического уровня имеют приблизительно равную надежность. Тогда для системы из К групп модулей одного уровня:

Pc(t) = exp(- ni i(t) dt), L(t) = ni i(t),

где ni - число модулей i-го уровня иерархии.

Для экспоненциального закона распределения, когда интенсивность отказов можно считать величиной постоянной:

L(t) = L = const, Pc(t) = exp(-Lt).

В общем случае надежность конструкции зависит от соотношения прочности и устойчивости к нагрузке, которую приходится выдерживать аппаратуре в процессе эксплуатации. Под прочностью здесь понимается способность аппаратуры выдерживать без разрушений внешние температурные, механические, влажностные и прочие воздействия, под устойчивостью – способность к работе при тех же воздействиях

Создание аппаратуры без излишних запасов прочности – важная и сложная задача, поскольку конструктор не всегда имеет четкие количественные параметры внешних воздействий, отсутствуют или имеются неточные математические модели, позволяющие весьма ориентировочно произвести указанную оценку. Это приводит к внесению в конструкцию завышенных запасов прочности и устойчивости, так называемых коэффициентов незнания, уточнение которых – условие успешного обеспечения заданной надежности при минимальной себестоимости.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: