Вентиляция и перфузия кровью легких

10.2.1. Вентиляция легких

Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит ми­нутный объем дыхания, определяемый как количество воздуха, которое про­ходит (или вентилируется) через легкие в 1 мин. В покое у человека ми­нутный объем дыхания составляет 6—8 л/мин. Только часть воздуха, кото­рым вентилируются легкие, достигает альвеолярного пространства и непо­средственно участвует в газообмене с кровью. Эта часть вентиляции легких называется альвеолярной вентиляцией. В покое альвеолярная вентиляция равна в среднем 3,5—4,5 л/мин. Основная функция альвеолярной вентиля­ции заключается в поддержании необходимой для газообмена концентра­ции О2 и СО2 в воздухе альвеол.

Легкие состоят из воздухопроводящей (дыхательные пути) и респиратор­ной зон (альвеолы). Дыхательные пути, начиная от трахеи и до альвеол, де­лятся по типу дихотомии и образуют 23 генерации элементов дыхательного тракта (рис. 10.11). В воздухопроводящей или кондуктивной зонах легких (16 генераций) отсутствует газообмен между воздухом и кровью, поскольку в этих отделах дыхательные пути не имеют достаточной для этого процесса сосудистой сети, а стенки дыхательных путей, из-за их значительной тол­щины, препятствуют обмену газов через них. Этот отдел воздухоносных путей называется анатомическим мертвым пространством, объем которого составляет в среднем 175 мл. На рис. 10.12 показано, каким образом воз­дух, заполняющий анатомическое мертвое пространство в конце выдоха, смешивается с «полезным», т. е. атмосферным воздухом и вновь поступает в альвеолярное пространство легких.

Дыхательные бронхиолы 17—19-й генераций относят к переходной (транзиторной) зоне, в которой начинается газообмен в малочисленных альвеолах (2 % от общего числа альвеол). Альвеолярные ходы и альвеоляр­ные мешочки, непосредственно переходящие в альвеолы, образуют альвео­лярное пространство, в области которого происходит в легких газообмен О2 и СО2 с кровью. Однако у здоровых людей и, особенно, у пациентов с


Трахея
ф
о
ф
ф
тг св
о
«о СО
се х о о
се х о со
(X
I
5: о m о
се х_ о ф со 2о
 

Вдыхаемый____ атмосферный воздух
     

Рис. 10.12. Эффект воздуха мертвого (вредного) пространства на вдыхаемый воздух в легкие. В конце выдоха анатомическое мертвое пространство заполняется выды­хаемым воздухом, в котором пониженное количество кислорода и высокое про­центное содержание углекислого газа. При вдохе «вредный» воздух анатомического мертвого пространства смешивается с «полезным» атмосферным воздухом. Эта га­зовая смесь, в которой меньше, чем в атмосферном воздухе, кислорода и больше уг­лекислого газа, поступает в респираторную зону легких. Поэтому газообмен в лег­ких происходит между кровью и альвеолярным пространством, заполненным не ат­мосферным воздухом, а смесью «полезного» и «вредного» воздуха.
 

Вдох
 

Рис. 10.11. Схема дыхательных путей легких человека. Дыхательные пути от уровня трахеи (1-я генерация) до долевых бронхов (2—4-я генерации деления) поддерживают свой просвет благодаря хрящевым кольцам в их стенке. Дыхательные пути от сегмен­тарных бронхов (5—11-я генерации) до терминальных бронхиол (12—16-я генерации) стабилизируют свой про­свет с помощью тонуса гладких мышц их стенок. 1—16-я генерации дыхательных путей образуют возду­хопроводящую зону легких, в кото­рой не происходит газообмена. Рес­пираторная зона легких имеет длину порядка 5 мм и включает первичные дольки или ацинусы: дыхательные бронхиолы (17—19-я генерации) и альвеолярные протоки (20—22-я ге­нерации). Альвеолярные мешочки состоят из многочисленных альвеол (23-я генерация), альвеолярная мем­брана которых является идеальным местом для диффузии О2 и СО2.


заболеваниями легких часть альвеолярного пространства может вентилиро­ваться, но при этом не участвовать в газообмене, поскольку эти отделы легких не перфузируются кровью. Сумму объемов таких областей легких и анатомического мертвого пространства обозначают как физиологическое мертвое пространство. Увеличение физиологического мертвого простран­ства в легких приводит к недостаточному снабжению тканей организма кислородом и к увеличению содержания в крови углекислого газа, что на­рушает в ней газовый гомеостазис.

10.2.2. Перфузия легких кровью

Эффективность выполнения основной функции дыхательной системы за­висит от соответствия перфузии (кровотока) в регионах легких с их вен­тиляцией. Так, хороший кровоток будет недостаточным для газообмена в регионах легких, если они слабо вентилируются воздухом с низким со­держанием кислорода, при этом незначительный объем вентиляции лег­ких не позволит удалить из крови углекислый газ. Соответственно, при слабом кровотоке в регионах легких возрастает объем функционального мертвого пространства, и перфузия легких кровью будет недостаточной для транспорта в ней нормального количества газов. Наконец, перфузия кровью регионов легких с недостаточной вентиляцией этих же отделов называется шунтированием, и это состояние является неадекватным для нормального газообмена. При шунтировании венозная кровь в легких не обогащается кислородом, что снижает его содержание в крови организ­ма. В нормальных физиологических условиях фактор гравитации оказы­вает наиболее выраженный эффект на вентиляцию и перфузию регионов легких кровью.

10.2.3. Эффект гравитации на вентиляцию и перфузию легких кровью

Легкие окружены плевральным пространством, отрицательное давление в котором изменяется от “5 до —10 см водн. ст. в различные фазы дыхатель­ного цикла. Этот фактор взаимодействует с эффектом гравитации на жид­кие среды, прежде всего кровь, содержащуюся в артериальных и венозных сосудах тканей легких. В результате под действием силы тяжести на ткань легких величина внутриплеврального давления на уровне основания лег­ких у человека в положении стоя менее отрицательная относительно атмо­сферного, чем в области верхушек легкого. Поэтому альвеолы верхушек легких имеют большие размеры, а стенка их растянута и более напряжена, чем у альвеол нижних участков легких. Альвеолы на уровне основания лег­ких растянуты в незначительной степени и имеют значительно больше по­тенциальные возможности для растягивания и вентиляции, чем в области верхушек. Поэтому растянутые альвеолы верхушки легких вентилируются меньше, чем альвеолы основания (рис. 10.13). Эти различия в вентиляции отделов легких приводят к тому, что вдыхаемый воздух неравномерно рас­пределяется в отделах альвеолярного пространства. Особенности распреде­ления воздуха, вдыхаемого в легкие, дополняется разницей в величине кровотока на уровне верхушек и основания легких. Относительно положе­ния тела в пространстве кровоток в верхних и нижних отделах легкого раз­личается под влиянием фактора гравитации.

У человека в вертикальном положении тела величина легочного крово­тока на единицу объема ткани легкого линейно убывает в направлении

пространство

Рис. 10.13. Влияние внутриплеврального давления и фактора гравитации на разме­ры альвеол верхних и нижних отделов легких. Между верхушками и основанием легких имеется градиент внутриплеврального давления, возникающий под влияни­ем гравитации на массу жидких сред и ткань легких.

 

В результате размеры альвеол в верхушках легких больше, чем в основании (А). Альвеолы в нижних отделах легких имеют большие потенциальные возможности для увеличения в них вентиляции легких при вдохе, чем альвеолы в области верхних отделов легких (Б).

снизу вверх, и меньше всего снабжаются кровью верхушки легких. Соот­ветственно в положении тела человека на спине кровоток в нижних (дор­сальных) отделах легких становится выше, чем в верхних (вентральных). Это обусловлено тем, что артериальная кровь, поступающая в легкие из правого желудочка, проходит по сосудам легких из областей низкого внут­риплеврального давления в области тонкостенных капилляров, которые окружены альвеолами, содержащими воздух под давлением, близким к ат­мосферному. Поэтому в зависимости от соотношения давления в альвео­лах (РА), мелких артериях (Ра) и мелких легочных венах (Pv) легкие разде­лены на функциональные зоны Веста (рис. 10.14).

В верхушках легких (зона 1) могут возникнуть области с давлением в ле­гочных капиллярах (особенно в фазу диастолы) ниже альвеолярного (Ра > Ра > Pv)- Капилляры в таких зонах могут спадаться, и кровоток че­рез них становится невозможным. Такие участки легких вентилируются, но не участвуют в газообмене и формируют альвеолярное мертвое про­странство.

В средних отделах легких (зона 2) под действием гравитации давление в альвеолах, как правило, превышает венозное (Ра > РА > Pv)- Поэтому вели­чину кровотока в зоне 2 по Весту определяет разность между артериаль­ным и альвеолярным давлениями. В зоне 2 практически не возникает аль­веолярное мертвое пространство.

В нижних отделах легких (зона 3) давление в легочных венах выше аль­веолярного (Ра > Pv > РА) и величина кровотока, как и в обычных сосудах, определяется разницей между артериальным и венозным давлениями.

Величина зон Веста динамично изменяется в зависимости от положе­ния тела в пространстве или глубины дыхания. При выдохе на уровне функциональной остаточной емкости примерно 2/3 объема легких может занимать зона 2. После глубокой экспирации (на уровне остаточного объе­ма) большая часть легких по соотношению перфузии кровью и вентиляции соответствует зоне 3 Веста. Относительная однонаправленность изменения градиента внутриплеврального давления и влияния гравитации на крово­ток в легких от верхних отделов легких к нижним теме не менее не сопря­жены в каждом отдельном регионе легких.

10.2.3. Коэффициент вентиляционно-перфузионных отношений в легких

Коэффициент представляет собой отношение величины вентиляции лег­ких (V) к величине их перфузии кровью (Q). При адекватности вентиляци­онно-перфузионных отношений (V/Q) величина коэффициента близка к 1. В обычных физиологических условиях в разных регионах легких, как пра­вило, коэффициент варьирует: 1<V/Q >1. Региональные отличия значения этого коэффициента обусловлены действием гравитации либо в случае по­явления в каком-либо регионе легких феномена шунтирования (рис. 10.15). Однако в целом 97—98 % от общего количества О2 и СО2, уча­ствующих в газообмене в легких, обменивается между альвеолярным про­странством и кровью легочных капилляров в условиях полного соответст­вия величины вентиляции и перфузии легких кровью (V/Q =1).







Газообмен в легких

Обмен газов между кровью и воздухом относится к основной функции легких. Воздух, поступающий в легкие при вдохе, нагревается и насыщает­ся водяными парами при движении в дыхательных путях и достигает аль­веолярного пространства, имея температуру 37 °C. Парциальное давление

Рис. 10.14. Модель, связывающая неравномерность распределения легочного кро­вотока при вертикальном расположении тела человека с величиной давления, дей­ствующего на капилляры.

 

В зоне 1 (верхушки легких) альвеолярное давление (РА) превышает давление в артериолах (Ра) и кровоток ограничен. В средней зоне легких (зона 2), где Рй > РА, кровоток больше, чем в зо­не 1. В основаниях легких (зона 3) кровоток усилен и определяется разностью давления в ар­териолах (Ра) и венулах (Pv). В центре схемы легкого — легочные капилляры; вертикальные трубочки по сторонам легкого — манометры.

Смешанная венозная кровь
Кровь,насыщенная кислородом
Альвеолярное пространство

 

Отсутствует кровоток
Рис. 10.15. Соотношение вентиляции и перфузии кровью-легких.

При прекращении вентиляции в каком-либо регионе легких увеличивается их функциональ­ное мертвое пространство (а). При этом венозная кровь перфузирует этот отдел легких и, не обогащаясь кислородом, поступает в большой круг кровообращения. Нормальное вентиляци­онно-перфузионное отношение формируется, когда вентиляция регионов легких соответству­ет величине их перфузии кровью (б). При отсутствии кровотока в каком-либо регионе легких (в) вентиляция также не обеспечивает нормальное вентиляционно-перфузионное отношение. V — вентиляция легких, Q — кровоток в легких.

водяных паров в альвеолярном воздухе при этой температуре составляет 47 мм рт. ст. Поэтому согласно закону парциальных давлений Дальтона вдыхаемый воздух находится в разведенном водяными парами состоянии и парциальное давление кислорода в нем меньше, чем в атмосферном воз­духе.

Обмен кислорода и углекислого газа в легких происходит в результате разницы парциального давления этих газов в воздухе альвеолярного про­странства и их напряжения в крови легочных капилляров. Процесс движе­ния газа из области высокой концентрации в область с низкой его концен­трацией обусловлен диффузией. Кровь легочных капилляров отделена от воздуха, заполняющего альвеолы, альвеолярной мембраной, через которую газообмен происходит путем пассивной диффузии. Процесс перехода газов между альвеолярным пространством и кровью легких объясняется диффу­зионной теорией.

10.3.1. Состав альвеолярного воздуха

Газовый состав альвеолярного воздуха обусловлен альвеолярной вентиля­цией и скоростью диффузии О2 и СО2 через альвеолярную мембрану. В обычных условиях у человека количество О2, поступающего в единицу времени в альвеолы из атмосферного воздуха, равно количеству О2, диф­фундирующего из альвеол в кровь легочных капилляров. Равным обра­зом количество СО2, поступающего в альвеолы из венозной крови, равно количеству СО2, которое выводится из альвеол в атмосферу. Поэтому в норме парциальное давление О2 и СО2 в альвеолярном воздухе остается практически постоянным, что поддерживает процесс газообмена между альвеолярным воздухом и кровью капилляров легких. Газовый состав аль­веолярного воздуха отличается от атмосферного воздуха тем, что в нем

Таблица 10.1. Парциальное давление газов в воздушной среде легких

Газы Атмосферный воздух, мм рт. ст. (%) Альвеолярный воздух, мм рт. ст. (%) Выдыхаемый воздух, мм рт. ст. (%)
N2 597,0 (78,62 %) 573,0 (75 %) 566,0 (74 %)
02 159,0 (20,84 %) 100,0 (13,5 %) 120,0 (16 %)
со2 0,3 (0,04 %) 40,0 (5,5 %) 27,0 (4 %)
Н2О 3,7 (0,5 %) 47,0 (6 %) 47,0 (6 %)
Итого... 760,0 (100,0 %) 760,0 (100,0 %) 760,0 (100,0 %)

 

меньше процентное содержание кислорода и выше процент углекислого газа. Состав альвеолярного воздуха отличается от выдыхаемого воздуха большим содержанием углекислого газа и меньшим содержанием кисло­рода (табл. 10.1).

10.3.2, Напряжение газов в крови капилляров легких

Диффузия газов через альвеолярную мембрану происходит между альвео­лярным воздухом и венозной, а также артериальной кровью легочных ка­пилляров. В табл. 10.2 приведены стандартные величины напряжения ды­хательных газов в артериальной и венозной крови легочных капилляров.

Градиенты парциального давления кислорода и углекислого газа обу­словливают процесс пассивной диффузии через альвеолярную мембрану кислорода из альвеол в венозную кровь (градиент 60 мм рт. ст.), а углеки­слого газа — из венозной крови в альвеолы (градиент 6 мм рт. ст.). Парци­альное давление азота по обе стороны альвеолярной мембраны остается постоянным, поскольку этот газ не потребляется и не продуцируется тка­нями организма. При этом сумма парциального давления всех газов, рас­творенных в тканях организма, меньше, чем величина атмосферного дав­ления, благодаря чему газы в тканях не находятся в газообразной форме. Если величина атмосферного давления будет меньше, чем парциальное давление газов в тканях и в крови, то газы начинают выделяться из крови в виде пузырьков, вызывая тяжелые нарушения в кровоснабжении тканей организма (кессонная болезнь).

10.3.3. Скорость диффузии О2 и СО2 в легких

Скорость диффузии (M/t) кислорода и углекислого газа через альвеоляр­ную мембрану количественно характеризуется законом диффузии Фика. Согласно этому закону газообмен (M/t) в легких прямо пропорционален градиенту (ДР) концентрации О2 и СО2 по обе стороны от альвеолярной мембраны, площади ее поверхности (S), коэффициентам (к) растворимо-

Таблица 10.2. Напряжение дыхательных газов в артериальной и венозной крови легоч­ных капилляров

Дыхательные газы Артериальная кровь (мм рт. ст.) Венозная кровь (мм рт. ст.)
Кислород 100 40
Углекислый газ 40 46
Азот 573 573
Вода 47 47

Альвеолярное Альвеолярная Просвет


     
 

Рис. 10.16. Диффузия газов через альвеолярную мембрану. Диффузия газов в легких осуществляется по градиентам концентрации О2 и СО2 между альвеолярным про­странством и кровью капилляров легких, которые разделены альвеолярной мембра­ной. При этом диффузия тем эффективнее, чем тоньше альвеолярная мембрана и области контакта альвеолоцитов и эндотелиоцитов. Поэтому альвеолярная мембра­на образована уплощенными частями альвеолоцитов I порядка (0,2 мкм) и эндоте­лиоцитов капилляров легких (0, 2 мкм), между которыми находится тонкая общая базальная мембрана (0,1 мкм) этих клеток. В состав мембраны входит также моно- молекулярный слой сурфактант а. Мембрана эритроцитов является препятствием для диффузии газов в легких.

сти О2 и СО2 в биологических средах альвеолярной мембраны и обратно пропорционален толщине альвеолярной мембраны (L), а также молекуляр­ной массе газов (М). Формула этой зависимости имеет следующий вид:

М ДР • S • к

* L • JM

Структура легких образует максимальное по величине поле для диффу­зии газов через альвеолярную стенку, которая имеет минимальную толщи­ну (рис. 10.16). Так, количество альвеол в одном легком человека прибли­зительно равно 300 млн. Суммарная площадь альвеолярной мембраны, че­рез которую происходит обмен газов между альвеолярным воздухом и ве­нозной кровью, имеет огромные размеры (порядка 100 м2), а толщина аль­веолярной мембраны составляет лишь — 0,3—2,0 мкм.

В обычных условиях диффузия газов через альвеолярную мембрану происходит в течение очень короткого отрезка времени (не более 3/4 с), пока кровь проходит через капилляры легких. Даже при физической рабо­те, когда эритроциты проходят капилляры легкого в среднем за т/4 с, ука­занные выше структурные особенности альвеолярной мембраны создают оптимальные условия для формирования равновесия парциальных давле­ний О2 и СО2 между альвеолярным воздухом и кровью капилляров легких (рис. 10.17). В уравнении Фика константы диффузии (к) пропорциональны растворимости газа в альвеолярной мембране. Углекислый газ имеет при­мерно в 20 раз большую растворимость в альвеолярной мембране, чем ки­слород. Поэтому, несмотря на существенное различие в градиентах парци­альных давлений О2 и СО2 по обе стороны от альвеолярной мембраны,


Альвеолярный газ

(РО2 = 106 мм рт.ст.)

             
   
     

Кров^ легочных кап ляров
     
 


 

Рис. 10.17. Градиенты парциального давления дыхательных газов в смешанной ве­нозной крови легочной артерии, альвеолярном воздухе и артериальной крови. Рав­новесие парциальных давлений углекислого газа и кислорода между альвеолярным воздухом и кровью легочных капилляров достигается в течение короткого времени (1/43Л с) движения плазмы крови и эритроцитов в капиллярах легких.

диффузия этих газов совершается за очень короткий отрезок времени дви­жения эритроцитов крови через легочные капилляры.

Газообмен через альвеолярную мембрану количественно оценивается диффузионной способностью легких, которая измеряется количеством газа (мл), проходящего через эту мембрану за 1 мин при разнице давления газа по обе стороны мембраны в 1 мм рт. ст.

Наибольшее сопротивление диффузии О2 в легких создают альвеоляр­ная мембрана и мембрана эритроцитов, в меньшей степени — плазма кро­ви в капиллярах. У взрослого человека в покое диффузионная способность легких О2 равна 20—25 мл • мин"*1 • мм рт. ст."1. СО2, как полярная молекула (О=С=О), диффундирует через указанные мембраны чрезвычайно быстро, благодаря высокой растворимости этого газа в альвеолярной мембране. Диффузионная способность легких СО2 равна 400—450 мл • мин"1 • мм рт. ст.-1.










Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: