Современные виды бетона: нано, фибробетон, прозрачный, самовосстанавливающийся

    Недавно появившийся на рынке новый материал нанобетон принципиально мало чем отличается от обычных бетонных смесей. В его составе также есть минеральное вяжущее, заполнитель и вода. Только в качестве пластификаторов применяются наноинициаторы, представляющие собой микроскопические полые трубки в несколько атомарных слоев углеродных полимеров. Диаметр этих нанотрубок  всего несколько единиц микрон, но их прочность больше ста гигапаскалей. Кроме того, их достоинством является невосприимчивость к щелочам и кислотам. Когда наноинициаторы взаимодействуют с цементом, они кристаллизуются, армируя бетон и на молекулярном уровне изменяя его структуру. Нанобетон устойчив к высоким температурам, свои характеристики он сохраняет при температуре до 800 °С. Использование в бетоне наноинициаторов улучшает физико-механические характеристики материала, повышая прочность на 150%, а морозоустойчивость – на 50%. Нанотрубки, находящиеся в структуре облицовочных плиток из нанобетона, выделяют под воздействием кислорода атомарный кислород, имеющий бактерицидные свойства.

    Так как изменение физической структуры нанобетона резко снижает потребность вяжущего составляющего в воде, это позволяет в шесть раз уменьшить вес бетонных конструкций и вероятность появления трещин. Внутреннее молекулярное армирование снижает потребность в армировании бетонной конструкции. Наноинициаторы повышают сцепление бетона с металлом, при этом они на молекулярном уровне взаимодействуют даже со слоями, подвергшимися коррозии.

    Рекомендуется использовать нанобетон при строительстве железобетонных конструкций от 74 м и при возведении объектов с повышенными требованиями к пожаробезопасности и сейсмоустойчивости. Благодаря плотной легкой однородной структуре, нанобетон не нуждается в гидроизоляции, а высокая прочность материала позволяет уменьшить объемы укладки нанобетона на 30%.

    Так как готовые сооружения из нанобетона имеют меньший вес, чем конструкции из обычного бетона, для них не требуется мощный фундамент, а это позволят сократить стоимость строительства и трудозатраты.

    Термин «нанобетон» сегодня довольно часто употребляется в строительном лексиконе. Это материал будущего, который станет в скором времени достойной заменой традиционным бетонным смесям.

    Нанобетон со своими высокими физико-механическими характеристиками открывает новые возможности для проектирования и строительства. Этот строительный материал, изготовленный на основе прогрессивных нанотехнологий, отличающийся прочностью, легкостью, стойкостью к термическим перепадам, позволяет удешевить строительство новых объектов и облегчить реставрацию старых конструкций.

    Класс нанобетонов включает несколько категорий:

1.Легкие нанопенобетоны рекомендованы для использования в индивидуальном строительстве и для возведения перегородок в помещениях разного назначения.

2.Нанобетоны средней плотности применяются в строительстве объектов, к которым выдвигаются требования повышенной прочности (мосты, дорожные и аэродромные покрытия и т. п.).

3. Нанобетоны высокой, сверхвысокой прочности подходят для строительства несущих конструкций в жилых домах, в коммерческих зданиях, в сооружениях промышленного сельскохозяйственного назначения (обустройство лифтовых шахт, изготовление балок, ферм и др.).

    Чтобы получить новые свойства материала, в состав бетона добавляются наночастицы оксида кремния, поликарбоксилата, диоксида титана, углеродные нанотрубки и фуллерены. Сейчас в России успешно развивается производство бетона с добавками базальтового фиброволокна и углеродными нанокластерами.

    Фибробетон являет собой бетон, который в своем составе имеет частицы фиброволокна, от названия которых и исходит название бетона. Эти волокна исполняют роль арматуры, которая применяется с целью повышения прочности бетонного раствора. Фибробетонные вкрапления одинаковы по длине и толщине. Это позволяет равномерно распределить их во всей структуре бетона. Существует много преимуществ фибробетона. Ниже мы детально обсудим их.

    Фибробетон – это мелкозернистый материал, одним из составляющих которого является армирующий наполнитель. В прошлом с расчетом на снижение хрупкости и количества появления трещин, предпринимались меры по повышению прочности бетона. Так, строители добавляли дисперсные волокна и распределяли их равномерно по всей бетонной массе. В результате этих работ характеристики полученного бетона улучшались:

- прочность повышалась до 30%;

- стойкость к физическим нагрузкам возросла;

- трещины образовывались реже.

    Различают две группы фибры:

1.Металлическая – исходным веществом является сталь, которая имеет различную форму и размеры;

2.Неметаллическая – производится из таких материалов, как стекло, акрил, хлопок, базальт, полиэтилен, карбон, углевод и другие.

Самыми популярными волокнами являются стеклянные и металлические. Однако с каждым днем все большую популярность приобретает полипропиленовая фибра. Что касается материалов из базальта и углерода, то они применяются крайне редко в связи с высокой стоимостью.

    Волокна хлопка, вискозы и нейлона предают специфические особенности бетону, армированному фиброй из стали. Структура фибробетона являет собой однородную конструкцию, которая со всех сторон пронизана волокнами из различных материалов. Именно они определяют технические характеристики бетона, создают эффект армирования.

    Стальная фибра – самый распространенный наполнитель. Он обладает повышенной прочностью к нагрузкам, не усаживается и не образует трещин во время службы. Наиболее примечательные его качества – длительный срок эксплуатации, плотность и стойкость к износу. Кроме того, данный фибробетон не теряет свойства под действием низких температур, влаги и огня.

    Следующее в рейтинге популярности волокно из стекла. Бетон этого типа обладает высокими качествами упругости, что наделяет его пластичностью. Однако щелочная среда вредна этому материалу. Стойкость к химическому влиянию обеспечивается полимерной пропиткой, путем добавления в бетон добавок на основе глиноземистого раствора. Именно он связывает щелочи и препятствует повреждению фибробетона. В конечном варианте вы получаете раствор с высокой прочностью, устойчивостью к высоким температурам, гидроизоляцией, стойкостью к воздействию химических средств и истиранию.

    Асбестовая фибра характеризуется долговечностью, стойкостью к щелочной среде, нагрузкам и термозащитными качествами. Бетон на основе базальта имеет повышенную прочность. Больше всего он подходит для конструкций, которые подвержены постоянным нагрузкам, деформации и вокруг которых существуют факторы для появления трещин.

    Общие характеристики остальных типов волокон – это защита от воздействия химических веществ, прочность на деформацию, стойкость к перепадам температур и неспособность проводить электричество. Благодаря синтетичной природе материалов вес бетона снижается.

    Выделяют следующие достоинства фибробетона:

- снижение затрат на строительство при использовании фибры для армирования вместо армирующей сетки или каркаса;

- высокая продуктивность работы по фибробетону;

- расход бетона с применением фибры значительно меньше;

- в отличие от остальных видов бетона фибробетон не теряет своих технических характеристик даже после окончания срока службы, поскольку - - благодаря фибре материал становится вязким;

- фибробетон обладает хорошими адгезионными качествами;

- фибра может применяться как в газо-, так и в пенобетонных конструкциях;

- в ходе армирования в газобетоне происходит процесс поризации и как - следствие наблюдается его устойчивость;

- фибра в пенобетоне повышает его прочность.

    Недостатком фибробетона является высокая стоимость, если сравнивать с обычным бетонным раствором. Однако этот недостаток легко компенсируется долговечностью стройматериала и его стойкостью к износу.

    Учитывая вышеперечисленные технические характеристики фибробетона, этот материал стал популярным на рынке. Он применяется в конструкциях, на которые оказывается сильное давление со стороны окружающей среды. Эти конструкции могут быть как промышленного, так и бытового характера. Каждый исходный материал имеет свою сферу применения.

    Прозрачный бетон (светопроводящий бетон) по структуре состоит из мелкозернистого высокопрочного бетона и расположенных в определенном порядке световолокон. Состав светопрозрачного бетона отличается от традиционного отсутствием крупного заполнителя. В матрицу из смеси портландцемента, песка, воды и пластификаторов погружены тонкие светопроводящие нити. Раствор может колероваться как в классические цвета -  черный, бежевый, белый, серый, так и в нестандартные - зеленый, красный, желтый.

    Попадая на торец проводника, свет многократно отражается, преломляется в изгибах и выходит через другой конец. Поэтому светопропускная способность плиты не зависит от толщины, а только от плотности расположения нитей. Чем она больше, тем интенсивнее проникают лучи сквозь конструкцию.При отсутствии источника света он ничем не отличается от обычного. Свои декоративные свойства он проявляет при подсветке лампами накаливания, светодиодами или солнечными лучами.

    Производство изделий из прозрачного бетона достаточно дорого и мало распространено, поэтому конструкции отличаются высокой ценой. Выпускаются плиты толщиной от 25 мм до 30 см и типовыми размерами -60х120 см. Стоимость квадратного метра прозрачного материала достигает 90 тысяч рублей, что обусловлено дороговизной оптоволокна. Но светопроводящие панели пользуются спросом, производство их растет. Применение прозрачного бетона связано с его исключительными декоративными качествами. Светодиодная подсветка помогает наиболее выигрышно подчеркнуть достоинства материала. Из него изготавливают штучные арт-объекты - светильники в стиле лофт, светящиеся столешницы и подоконники, скамейки, ниши, стеновые панно. Основа прозрачного бетона - высококачественный портландцемент марок М300-М700. Мелкий заполнитель — кварцевый мытый песок фракции 2-3 мм, гранитная или мраморная крошка. Для улучшения удобоукладываемости смеси используют пластификаторы, понижающие водоцементное соотношение.

    Светопроводность составу придает оптическое стекловолокно диаметром до 0,25-0,5 мм. Его укладывают равномерно по толщине плиты, чтобы создать направление световому потоку. Можно формировать подсвечиваемые логотипы, картины или надписи. Содержание волокон - до 5%. Помимо оптической проницаемости включение нитей в состав камня придает ему высокую прочность на сжатие и изгиб из-за эффекта армирования. Добавка большего количества светопроводящих элементов увеличивает прозрачность, но одновременно ухудшает эксплуатационные характеристики.

    Механические и физические свойства прозрачного бетона близки к оригиналу:

-плотность составляет 2050-2400 кг/м³;

-прочность на сжатие не менее 20 МПа;

-класс морозостойкости до F100;

-коэффициент теплопроводности 0,1-0,2 Вт/м°С;

-водонепроницаемость W4 — W6;

водопоглощение до 8%;

-группа горючести НГ;

-индекс звукоизоляции 48-52 дБ;

экологическая безопасность;

-устойчивость к УФ-излучению.

    Прозрачный бетон неустойчив к силикатной коррозии во влажной среде, поэтому его поверхность обрабатывают защитными составами:

- пропитками на водной или силиконовой основе;

- воском для камня;

- литиевыми пропитками;

лаками.

    Они придают поверхности более высокую износостойкость, устойчивость к агрессивным средам, влагостойкость.

    Прозрачный бетон можно шлифовать, полировать, резать, высверливать в нем отверстия. Отделочные панели крепят к основе приклеиванием или специальными незаметными анкерами. Светопрозрачные блоки укладывают на растворы с добавлением эпоксидной смолы.

    Самовосстанавливающийся бетон – новая ступень в развитии строительных материалов. Новый самовосстанавливающийся бетон отличается от классических рецептов добавлением в состав грибков и спор бактерий, способных выжить в щелочных условиях и придать строительному материалу новые свойства. В процессе своей жизнедеятельности бактерии вырабатывают вещества, восстанавливающие поврежденную поверхность бетонной конструкции.

    Известный факт, что бетон со временем рассыхается, покрываясь трещинами, в которые проникает вода, а вместе с ней и микроорганизмы, начинающие процесс коррозии. В результате такого разрушения требуется дорогостоящий ремонт бетонного сооружения. Добавленные в состав грибки и споры бактерий могут находиться в состоянии покоя на протяжении десятилетий. Как только конструкция покрывается трещинами, и в них проникает вода, микроорганизмы активизируются и начинают вырабатывать карбонат кальция (известняк), заполняя этим материалом трещины в бетоне. Этот процесс самовосстановления продлевает срок эксплуатации бетонного строения. Данный способ борьбы с трещинами, станет очень выгодным для изготовителей железобетонных изделий и потребителей, так как существующие мероприятия являются дорогими и трудоемкими. Новая технология позволит защитить уже построенные конструкции от трещин и продлить срок службы, путем распыления на поверхности, жидкости с бактериями. Поскольку биобетон все еще находится в стадии разработки, этот вид бетона используется в ограниченном масштабе и не широко распространен. Некоторые основные препятствия — это затраты и производство. На данный момент стоимость производства самовосстанавливающегося бетона примерно в 2 раза превышает производства обычного. И все еще продолжаются исследования, используя различные подходы для снижения затрат и для поиска более дешевого материала (замена лактата кальция каким-нибудь другим веществом), чтобы новый бетон стал более доступным.


 


Заключение

    Сегодня бетон стал основным материалом, используемым в строительстве. Специалисты подбирают вид бетонной смеси в зависимости от типа и назначения сооружаемой конструкции. Причем они учитывают, что дополнительные компоненты, входящие в состав раствора, способствуют улучшению технических характеристик большинства видов цементной смеси. Виды бетонов, которые представлены на рынке современных стройматериалов, отличаются высоким качеством и разнообразием. Среди ингредиентов, добавляемых в раствор, должны быть вяжущие вещества и заполнитель. Бетон широко используется в жилищном, промышленном, транспортном, гидротехническом, энергетическом и других видах строительства. Он применяется в самых разных эксплуатационных условиях, гармонично сочетается с окружающей средой, имеет неограниченную сырьевую базу и сравнительно низкую стоимость. К этому следует добавить высокую архитектурно-строительную выразительность, сравнительную простоту и доступность технологии, возможность широкого использования местного сырья и утилизации техногенных отходов при его изготовлении, малую энергоемкость, экологическую безопасность и эксплуатационную надежность. Именно поэтому бетон является и, без сомнения, останется в обозримом будущем одним из основных конструкционных материалов.

    Последние десятилетия двадцатого века ознаменовались значительными достижениями в технологии бетона. В эти годы появились и получили широкое распространение новые эффективные вяжущие, модификаторы для вяжущих и бетонов, активные минеральные добавки и наполнители, армирующие волокна, новые технологические приемы и методы получения строительных композитов.


 


Список литературы

 

1. Ахвердов И.Н. Теоретические основы бетоноведения / И.Н. Ахвердов. – Минск.: Вища школа, 1991 – 188 с.

2.Баженов, Ю. М. Технология бетона / Ю.М. Баженов – М.: Изд – во АСВ, 2002 – 472 с.

3. Буров Ю.С. Технология строительных материалов и изделий / Ю.С. Буров. – М.: Высшая школа, 1971 – 265 с.

4.Дворкин Л.И. Строительное материаловедение. -М.: Инфра-Инженерия. 2013 С. 457–519.

5. Микульский В.Г. Строительные материалы// М.: Изд–во АСВ. 2000.С. 254-256.

6.Попов Л.Н. Строительные материалы и детали / Л.Н. Попов. – М.: Стройиздат, 1973 – 392 с.

7.Учебник «Железобетонные Конструкции» Байков В. Н., Сигалов Э. Е. Методическое пособие «Проектирование составов тяжелого бетона» Исаев А. В. — М.: Стройзад, 1984. С.156.

8.Строительные материалы и изделия / К.Н. Попов, М.Б. Каддо // Учеб. -М.: Высшая школа, 2005. 345 с.

9.Строительные материалы и изделия: учеб. пособие / В. С. Руднов [и др.]; под общ. ред. доц., канд. техн. наук И. К. Доманской. - Екатеринбург: Изд-во Урал. ун-та, 2018 — 203, [1] с.

10.Фибробетон: технико-экономическая эффективность применения». Журнал "Промышленное и гражданское строительство", №9/2002, 17.07.2016

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: