Вирусы беспозвоночных

На долю беспозвоночных приходится около 80 % всех известных видов животных, поэтому нет ничего удивительного в том, что они скрывают в себе огромное множество вирусов различных типов. Наиболее изучены вирусы, поражающие насекомых, но даже здесь доступная по ним информация носит фрагментарный характер. Впрочем, в последнее время были описаны вирусные заболевания и у других беспозвоночных. Эти вирусы остаются малоизученными, и некоторые сообщения об открытии следует принимать с осторожностью, пока вирусная природа этих болезней не будет окончательно доказана. Кроме того, необходимо также проверить инфективность изолированных вирусов по отношению к неинфицированным хозяевам того же вида, у кого эти вирусы были обнаружены[208].

В настоящее время выделено отдельное семейство вирусов, поражающих главным образом членистоногих, в особенности — насекомых, обитающих в водных и влажных средах: иридовирусы (Iridoviridae, от англ. Invertebrate iridescent viruses — «радужные вирусы беспозвоночных»; такой цвет наблюдается у образцов поражённых насекомых). Они представляют собой икосаэдрические частицы 120—180 нм в диаметре, содержащие внутреннюю липидную мембрану и геном в виде двуцепочечной ДНК, содержащей 130—210 тыс. пар нуклеотидов[209].

Другие вирусы, поражающие насекомых: семейство Baculoviridae, подсемейство Entomopoxvirinae семейства Poxviridae, род Densovirus семейства Parvoviridae, некоторые вирусы семейств Rhabdoviridae, Reoviridae, Picornaviridae [210].

Как и все беспозвоночные, медоносная пчела чувствительна ко многим вирусным инфекциям[211].

Вирусы растений

Запрос «Вирусы растений» перенаправляется сюда. На эту тему нужно создать отдельную статью.

Перцы, поражённые вирусом пятнистости

Существует много типов вирусов растений. Часто они вызывают снижение урожайности, принося большие убытки сельскому хозяйству, поэтому контроль таких вирусов очень важен с экономической точки зрения.[212] Вирусы растений часто распространяются от растения к растению организмами, известными как переносчики. Обычно ими выступают насекомые, но ими могут быть также грибы, черви-нематоды и одноклеточные организмы. Если контроль вируса растений признаётся экономически выгодным, например, в случае многолетних фруктовых деревьев, усилия направляются на устранение переносчиков или альтернативных хозяев, к примеру, сорняков[213]. Вирусы растений не могут поражать человека и других животных, так как они могут размножаться лишь в живых растительных клетках[214].

Растения имеют сложные и эффективные механизмы защиты от вирусов. Наиболее эффективным механизмом является наличие так называемого гена устойчивости (R от англ. resistance — «устойчивость»). Каждый R-ген отвечает за устойчивость к отдельному вирусу и вызывает гибель клеток, соседних с поражённой, что невооружённым глазом видно как большое пятно. Это останавливает развитие болезни вследствие остановки распространения вируса[215]. Другим эффективным методом является РНК-интерференция[216]. Будучи поражёнными вирусом, растения часто начинают вырабатывать природные противовирусные вещества, такие как салициловая кислота, оксид азота NO и активные формы кислорода[217].

Вирусы растений и созданные на их основе вирусоподобные частицы (VLPs) нашли применение в биотехнологиях и нанотехнологиях. Капсиды большинства вирусов растений имеют простую и устойчивую структуру, и вирусные частицы могут производиться в огромных количествах как поражённым растением, так и различными гетерологичными системами. Вирусы растений могут изменяться химически и генетически, заключая в оболочку инородные частицы, а также способны встраиваться в надмолекулярные структуры, что делает возможным их применение в биотехнологиях[218].

Для повышения достоверности результатов диагностики вирусологического статуса растений необходимо использовать как минимум два метода, причем, желательно, высокочувствительные — ИФА и ПЦР. Выявляемость вирусов повышается за счет использования гидроксипроизводного бензойной кислоты (ГПБК) в качестве эффективного антиоксиданта, учёта биологических особенностей культур и условий окружающей среды[219].

Вирусы грибов

Вирусы грибов называются миковирусами. В настоящий момент вирусы выделены у 73 видов из 57 родов, относящихся к 5 классам[220], но, предположительно, в безвредном состоянии вирусы существуют у большинства грибов. В общем эти вирусы представляют собой круглые частицы 30—45 нм диаметром, состоящие из множества субъединиц единственного белка, сложенных вокруг генома, представленного двуцепочечной РНК. Как правило, вирусы грибов относительно безвредны. Некоторые грибные штаммы могут поражаться многими вирусами, но большинство миковирусов тесно связаны со своим единственным хозяином, от которого передаются его потомкам. Классификацией вирусов грибов сейчас занимается специально созданный комитет в составе ICTV[220]. В данный момент он признаёт 3 семейства вирусов грибов, а наиболее изученные миковирусы относятся к семейству Totiviridae [221]

Установлено, что антивирусная активность пенициллиновых грибов вызвана индукцией интерферона двухцепочечной РНК от вирусов, поражающих грибы[220].

Если же вирус, попадая в гриб, проявляет свою вирулентность, то реакция гриба на это может быть различной: снижение или повышение вирулентности у патогенных видов, дегенерация мицелия и плодовых тел, изменение окраски, подавление спороношения. Некапсидированные вирусные РНК передаются через анастомозы независимо от митохондрий.

Вирусные заболевания могут наносить ущерб грибоводческим предприятиям, например, вызывать побурение плодовых тел шампиньона, изменение окраски у зимнего опёнка, что снижает их коммерческую ценность. Вирусы, вызывающие гиповирулентность грибов-патогенов, могут использоваться для борьбы с заболеваниями растений[222][223].

Вирусы протистов

К вирусам протистов относят вирусы, поражающие одноклеточных эукариот, не включённых в царство животные, растения или грибы. Некоторые из известных на данный момент вирусов протистов[224]:

Название вируса (род) Систематическое положение (семейство) Поражаемый протист
Dinornavirus Alvernaviridae Heterocapsa circularisquama
Endornavirus Endornaviridae Phytophthora
Labyrnavirus Labyrnaviridae Aurantiochytrium
Marnavirus Marnaviridae Heterosigma akashiwo
Marseillevirus Marseilleviridae Amoeba
Mimivirus Mimiviridae Acanthamoeba polyphaga
Chlorovirus Phycodnaviridae Paramecium bursaria
Coccolithovirus Phycodnaviridae Emiliania huxleyi
Prasinovirus Phycodnaviridae Micromonas pusilla
Prymnesiovirus Phycodnaviridae Chrysochromulina brevifilum
Raphidovirus Phycodnaviridae Heterosigma akashiwo
Cryspovirus Partitiviridae Cryptosporidium parvum
Hemivirus Pseudoviridae Volvox carteri
Pseudovirus Pseudoviridae Physarum polycephalum
Mimoreovirus Reoviridae Micromonas pusilla
Giardiavirus Totiviridae Giardia lamblia
Leishmaniavirus Totiviridae Leishmania
Trichomonasvirus Totiviridae Trichomonas vaginalis
Bacilladnavirus Не определено Chaetoceros salsugineum Rhizosolenia setigera
Dinodnavirus Не определено Heterocapsa circularisquama
Rhizidiovirus Не определено Rhizidiomyces

Многие вирусы простейших имеют необычно большие размеры. Например, геном Marseillevirus, впервые выделенный из амёбы, имеет геном размером 368 КБ, а Mamavirus, поражающий протиста Acanthamoeba, по размеру превосходит даже мимивирус (а его капсид достигает около 500 нм в диаметре) и некоторые бактерии. Также в число гигантских вирусов входит вирус, поражающий широко распространённого морского протиста Cafeteria roenbergensis (англ. Cafeteria roenbergensis virus, CroV)[225].

Вирусы бактерий

Основная статья: Бактериофаги

Электронная микрофотография множества бактериофагов, прикрепившихся к бактериальной клеточной стенке

Бактериофаги представляют собой широко распространённую и разнообразную группу вирусов, достигающую большей численности в водных средах обитания — в океанах этих вирусов более чем в 10 раз больше, чем бактерий[226], достигая численности в 250 млн. вирусов на миллилитр морской воды[227]. Эти вирусы поражают специфичные для каждой группы бактерии, связываясь с клеточными рецепторами на поверхности клетки и затем проникая внутрь неё. В течение короткого промежутка времени (иногда считанных минут) бактериальная полимераза начинает транслировать вирусную мРНК в белки. Эти белки или входят в состав вирионов, собираемых внутри клетки, или являются вспомогательными белками, помогающими сборке новых вирионов, или вызывают лизис клетки. Вирусные ферменты вызывают разрушение клеточной мембраны, и, в случае фага Т4, всего лишь через 20 минут после проникновения в клетку на свет появляются свыше трёх сотен бактериофагов[228].

Главным механизмом защиты бактериальных клеток от бактериофагов является образование ферментов, разрушающих чужеродную ДНК. Эти ферменты, называемые эндонуклеазами рестрикции, «разрезают» вирусную ДНК, впрыснутую внутрь клетки[229]. Бактерии также используют систему, называемую CRISPR, которая хранит информацию о геномах вирусов, с которыми бактерия сталкивалась ранее, и это позволяет клетке блокировать репликацию вируса с помощью интерференции РНК[230][231]. Эта система обеспечивает приобретённый иммунитет бактериальной клетки.

Бактериофаги могут выполнять и полезную для бактерий функцию, так, именно бактериофаг, заражающий дифтерийные палочки, кодирует ген их токсина, нужного этим бактериям и столь опасного для человека[232]:45.

Вирусы архей

Основная статья: Вирусы архей

Sulfolobus, поражённый ДНК-вирусом Sulfolobus tengchongensis spindle-shaped virus 1 (STSV-1).[233][234][235][236][237] В левой и нижней частях фотографии видны две вирусные частицы веретеновидной формы, отпочковывающиеся от клетки археи. Длина отрезка — 1 мкм

Некоторые вирусы размножаются внутри архей: это двуцепочечные ДНК-содержащие вирусы с необычной, подчас уникальной формой[9][238]. Наиболее детально они изучены у термофильных архей, в частности, порядков Sulfolobales и Thermoproteales [239]. Мерами защиты против этих вирусов могут быть РНК-интерференция от повторяющихся последовательностей ДНК в геномах архей, родственных генам вирусов[240][241].

Вирусы вирусов

Вирофаг Спутник

При изучении вирусных фабрик мимивируса было обнаружено, что на них собираются небольшие вирионы и другого вируса, который был назван Спутником[242]. Спутник, по всей видимости, сам не способен заражать клетки амёб (которые служат хозяевами мимивируса) и размножаться в них, но может делать это совместно с мама- или мимивирусом, что классифицирует его как вирус-сателлит. Спутник стал первым известным вирусом-сателлитом, содержащим двухцепочечную ДНК и размножающимся в эукариотических клетках. Однако авторы работы предлагают рассматривать его не просто как сателлит, а как вирофаг (вирус вируса) по аналогии с бактериофагами (вирусами бактерий)[243][244][245]. Репликация как вирусов-сателлитов, так и вирофагов зависит от другого вируса и клетки-хозяина. Однако для репликативного цикла вирофагов характерны три уникальные особенности. 1) Отсутствует ядерная фаза репликации. 2) Репликация вирофагов происходит в вирусных фабриках гигантских ДНК-содержащих вирусов-хозяев. 3) Вирофаги зависят от ферментов, синтезируемых вирусами-хозяевами, но не клетками-хозяевами. Таким образом, вирофаги считаются паразитами гигантских ДНК-содержащих вирусов, например, мимивирусов и фикоднавирусов[246][247]. При этом синтез капсидных белков вирофагов (как и синтез белков всех известных вирусов) полностью зависит от трансляционного аппарата клетки-хозяина[248]. Хотя строгого доказательства ещё нет, некоторые факты говорят в пользу того, что Спутник действительно является вирофагом. Например, в его геноме присутствуют регуляторные элементы, характерные для мимивируса и узнаваемые его транскрипционным аппаратом (последовательности, близкие к позднему промотору мимивируса, сигналы полиаденилирования). Кроме того, присутствие Спутника снижает продуктивность размножения мимивируса: лизис клетки-хозяина происходит с задержкой, и образуются дефектные вирионы мимивируса[242]. По данным на 2016 год, из культивируемых клеток было изолировано пять вирофагов. Ещё 18 вирофагов описано на основе данных метагеномного анализа (геномы двух из них почти полностью секвенированы)[249][250].

Роль вирусов в биосфере

Вирусы являются самой распространённой формой существования органической материи на планете по численности. Они играют важную роль в регуляции численности популяций некоторых видов живых организмов (например, вирус дикования с периодом в несколько лет сокращает численность песцов в несколько раз).

Иногда вирусы образуют с животными симбиоз[251][252]. Так, например, яд некоторых паразитических ос содержит структуры, называемые поли-ДНК-вирусами (Polydnavirus, PDV), имеющие вирусное происхождение.

Однако основная роль вирусов в биосфере связана с их деятельностью в водах океанов и морей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: