Неадаптивная пластичность ускоряет адаптивную эволюцию

 

Одна из важных проблем эволюционной биологии – взаимосвязь генетической эволюции и ненаследственной фенотипической изменчивости. В основе эволюционных изменений лежит дифференциальное размножение генетических вариантов (аллелей). Результаты эволюции «запоминаются» на уровне генотипа. Однако отбор всегда идет по фенотипу, а фенотип определяется генотипом не точно, а лишь приблизительно. Ход развития организма зависит не только от генов, но также от условий среды, и к тому же в развитии всегда есть элемент случайности («онтогенетический шум»). Фенотипический диапазон, возможный при данном генотипе, называют нормой реакции, а изменчивость фенотипа при неизменном геноме, обусловленную колебаниями среды, – фенотипической пластичностью, или модификационной изменчивостью. Некоторые организмы в ходе эволюции выработали способность отвечать на те или иные средовые воздействия адаптивными (выгодными, полезными) изменениями фенотипа, например, отращивая более густую шерсть в холодную погоду. В таких случаях говорят об адаптивных модификациях. Но это – лишь частный случай фенотипической пластичности, которая далеко не всегда бывает полезной. Хороший пример неадаптивной фенотипической пластичности – замедление развития холоднокровных животных в регионах с холодным климатом, где короткое лето требует, наоборот, ускоренного развития. Хотя пластические прижизненные изменения не наследуются, интуитивно понятно, что ход эволюции должен в какой‑то мере от них зависеть. Фенотипическая пластичность – широкая или узкая, адаптивная или неадаптивная – должна так или иначе влиять на интенсивность и направленность отбора. Например, если пластические изменения адаптивны, то они теоретически могут играть роль своеобразного эволюционного буфера, сглаживая отбор и тормозя эволюционные изменения (в эволюции человека подобным буфером может стать культура). И наоборот, если пластические изменения вредны, они могут усилить отбор генетических вариантов, компенсирующих вредные прижизненные изменения фенотипа, и тем самым ускорить эволюцию. Несмотря на огромную важность подобных эффектов для эволюционной теории, хороших эмпирических данных по ним на удивление мало. Эксперимент на тринидадских гуппи, проведенный американскими биологами, показал, что у этих рыбок неадаптивная фенотипическая пластичность является мощным фактором, ускоряющим адаптацию к новой среде. Признаки, в новых условиях меняющиеся в «неправильную» сторону, подвергаются более сильному отбору и поэтому быстрее эволюционируют в противоположном («правильном») направлении.

 

 

Когда живые организмы попадают в новые для них условия, многие их признаки могут измениться, причем быстро и без всякой эволюции. Например, недостаток пищи способен вызвать замедление роста, а избыток – привести к ожирению. Фенотипической пластичности в той или иной мере подвержены практически все признаки. Можно даже сказать, что чисто врожденных признаков не бывает: фенотип в целом и все его компоненты развиваются в результате сложного взаимодействия генетических и средовых факторов. Это утверждение кажется спорным, но подумайте, много ли существует признаков, для которых в принципе невозможно подобрать такие условия, когда признак не разовьется или разовьется как‑то иначе?

Фенотипическую пластичность называют адаптивной или неадаптивной в зависимости от того, полезно или вредно данное изменение в новых условиях (конечно, бывают и нейтральные пластические изменения, но они пока не привлекают внимания теоретиков). Например, если в условиях дефицита пищи мелкие особи размножаются эффективнее, чем крупные, то замедление роста в ответ на голодание будет примером адаптивной пластичности. Если же особи, сумевшие вырасти большими, невзирая на скудное питание, все‑таки размножаются лучше мелких, то же самое ненаследственное изменение придется классифицировать как неадаптивную пластичность.

В простейших эволюционных моделях фенотипическая пластичность обычно игнорируется, а все внимание концентрируется на наследственной изменчивости. По умолчанию такие модели предполагают, что существенные различия между особями определяются генотипом, а всеми прочими можно пренебречь. При этом биологи хорошо понимают, что фенотипическая пластичность не только сама эволюционирует, но и влияет на ход эволюции, причем влияние это бывает весьма сильным, сложным и разнообразным.

С одной стороны, адаптивная пластичность может замедлять адаптивную эволюцию. Ведь если признак в новых условиях и так меняется в «правильную» сторону, приближая фенотип к оптимальному для этих условий состоянию, то направленный (движущий) отбор будет слабее действовать на данный признак – и его эволюция замедлится. С другой стороны, адаптивная пластичность может и способствовать эволюционным изменениям – например, за счет эффекта Болдуина, о котором рассказано во втором томе нашей книги «Эволюция человека». Скажем, если в новых условиях лучше выживают те особи, которым удалось в течение жизни научиться какому‑то новому поведению (изменение поведения в результате обучения – это тоже фенотипическая пластичность), то со временем под действием отбора будут закрепляться мутации, способствующие этому новому поведению или даже делающие его врожденным (инстинктивным), а также мутации, «подгоняющие» морфологию и физиологию организма к новому поведению.

Эволюционная роль неадаптивной пластичности тоже неоднозначна. По‑видимому, подобно адаптивной пластичности, неадаптивная может как ускорять, так и замедлять эволюцию в зависимости от обстоятельств. Начнем с замедления. На ранних этапах адаптации к неблагоприятным условиям неадаптивная пластичность будет снижать приспособленность организмов, которым и без того в этих условиях несладко, маскируя формирующиеся наследственные адаптации и сводя на нет «усилия» естественного отбора. В результате может сложиться ситуация, когда мигранты из более благоприятных местообитаний, не имеющие этих адаптаций, но зато сытые и довольные жизнью, будут постоянно вытеснять из данной неблагоприятной ниши аборигенов – только для того, чтобы вскоре самим ослабеть и быть вытесненными новой волной мигрантов. В такой обстановке очень трудно по‑настоящему приспособиться к новой нише. Недавно сотрудникам кафедры биологической эволюции МГУ имени М. В. Ломоносова удалось воспроизвести этот эффект в эволюционном эксперименте на дрозофилах (Марков и др., 2015).

Не исключено, что неадаптивная фенотипическая пластичность может и ускорять адаптивную эволюцию. Идея проста: неадаптивная пластичность смещает признак в сторону, противоположную оптимуму, а значит, признак будет подвергаться более сильному действию движущего отбора. В результате может произойти так называемая генетическая компенсация (когда полезные наследственные изменения компенсируют вредные ненаследственные). Типичный пример – эволюция темпов развития у холоднокровных животных (таких как лягушки) в ходе освоения ими разных климатических зон. Как правило, понижение температуры ведет к замедлению развития холоднокровных. Однако в условиях короткого северного лета медленное развитие, скорее всего, будет вредным признаком. Наоборот, здесь надо расти как можно быстрее. Таким образом, в данном случае фенотипическая пластичность неадаптивна.

Как следствие, популяция, попавшая в район с холодным климатом, будет подвергаться очень сильному отбору на ускорение развития – более сильному, чем в случае отсутствия фенотипической пластичности. Такой отбор, направленный в сторону, противоположную фенотипическому эффекту среды, иногда называют отбором против градиента среды. В итоге спустя какое‑то количество поколений может сложиться такая картина: две популяции, адаптированные к жизни в холодном и теплом климате, демонстрируют сходный темп развития в своих родных местообитаниях. Но если поместить представителей этих популяций в одинаковые температурные условия, то адаптированные к холоду особи будут развиваться быстрее, чем адаптированные к теплу. Это объясняется тем, что в холодных условиях под действием отбора закрепляются генетические изменения, ускоряющие развитие. Они полностью компенсируют, сводят на нет вредоносный (замедляющий развитие) эффект неадаптивной фенотипической пластичности. В результате две генетически различающиеся популяции выглядят так, как будто между ними нет различий (это называют криптической эволюцией).

Впрочем, все эти идеи основываются по большей части на косвенных данных. Экспериментальное изучение влияния фенотипической пластичности на ход эволюции – сложная задача, и биологи пока еще только начинают искать подходы к ее решению.

Важный шаг в этом направлении сделали американские биологи, изучающие в природных и лабораторных условиях эволюцию тринидадских гуппи, Poecilia reticulata (см. Исследование № 9 и илл. IV на цветной вклейке). Эти рыбки стали классическим объектом эволюционных исследований благодаря знаменитым работам Джона Эндлера, которые теперь продолжают Дэвид Резник из Калифорнийского университета в Риверсайде (США) и его коллеги. О работах Эндлера и Резника рассказано во многих популярных книгах, в том числе в книге Ричарда Докинза «Самое грандиозное шоу на Земле».

Эндлер, Резник и их коллеги ранее показали, что важным фактором, направляющим эволюцию гуппи в ручьях и речках острова Тринидад, является наличие или отсутствие хищников (таких как хищные цихлиды Crenicichla frenata). В ручьях, где хищники есть, отбор способствует ускоренному росту, быстрому созреванию и блеклой маскировочной окраске. Шансов на долгую жизнь мало, поэтому выгодно как можно быстрее достичь зрелости, чтобы успеть оставить потомство. Если же хищников нет, главным фактором отбора становится внутривидовая конкуренция (в том числе соревнование самцов за внимание самок) – и тогда преимущество получают медленно растущие особи, а самцы начинают щеголять яркими нарядами.

Впрочем, перечисленные наглядные фенотипические изменения – лишь верхушка айсберга. Под ними скрывается сложный комплекс физиологических изменений, формирующихся в череде поколений под действием отбора и основанных на изменении экспрессии множества генов.

Свое новое исследование ученые посвятили изучению роли фенотипической пластичности в эволюции гуппи при переходе из водоемов с хищниками в водоемы, где хищники отсутствуют (Ghalambor et al., 2015). В работе использовались четыре популяции гуппи:

 

№ 1: природная популяция из реки, где много хищников;

№ 2: природная популяция из ручья без хищников, которая, судя по результатам генетического анализа, некогда произошла от популяции № 1;

№ 3 и 4: две искусственные популяции, произошедшие от рыбок из популяции № 1, которых авторы сами пересадили в два свободных ручья без хищников.

 

Популяциям 3 и 4 позволили приспосабливаться к новым условиям на протяжении года, что соответствует трем‑четырем поколениям гуппи. Затем ученые измерили уровень экспрессии генов у представителей всех популяций (это делается путем массового выделения, секвенирования и подсчета транскриптов – молекул РНК, «считанных» с того или иного гена). Перед тем как брать образцы для анализа, рыбок в течение двух поколений выращивали в стандартных лабораторных условиях, чтобы убрать все ненаследственные (определяющиеся средой) различия. Тем самым исследователи временно избавились от эффектов фенотипической пластичности. И это дало возможность оценить наследственные (эволюционные) изменения, произошедшие в популяциях 2, 3 и 4 в ходе адаптации к жизни без хищников.

В результате удалось выявить 135 генов, экспрессия которых значимо изменилась в популяциях 2, 3 и 4 по сравнению с популяцией 1, причем во всех трех популяциях изменение направлено в одну и ту же сторону: либо экспрессия во всех трех случаях выросла, либо уменьшилась. Про эти гены можно уверенно сказать, что их экспрессия изменилась под действием отбора, а значит, эти изменения повысили приспособленность рыбок к жизни в ручье без хищников. Эволюционные изменения экспрессии генов происходят за счет закрепления отбором изменений в каких‑нибудь регуляторных участках ДНК или в генах белков, регулирующих транскрипцию. Конкретные генетические механизмы изменений в данном случае не важны. Достаточно помнить, что уровень экспрессии гена – такой же фенотипический признак, как и любой другой, и зависит он отчасти от генов, отчасти от среды. Изменения экспрессии 135 генов, о которых идет речь, возникли в ходе адаптации и являются наследственными (генетически обусловленными), а не средовыми.

Между прочим, сам факт, что в популяциях 3 и 4 всего за один год согласованно изменилась экспрессия целых 135 генов, причем в ту же сторону, что и в популяции 2 (которая гораздо дольше приспосабливалась к жизни без хищников), говорит об очень быстрой адаптивной эволюции, причем параллельной (а значит, предсказуемой). Для сравнения: значимые разнонаправленные изменения экспрессии в популяциях 3 и 4 были выявлены только у одного гена.

Теперь, зная, в какую сторону направлены эволюционные изменения при выходе гуппи из‑под пресса хищников, нужно было оценить фенотипическую пластичность. Иными словами, нужно было понять, как меняется экспрессия тех же самых 135 генов в течение жизни рыбки (при неизменном геноме) в зависимости от того, есть поблизости хищники или нет.

Чтобы это выяснить, рыбок из предковой популяции (№ 1) держали в аквариумах с проточной водой, где присутствовал запах хищной цихлиды C. frenata. В качестве контроля других рыбок из популяции 1 держали в таком же аквариуме, но уже без запаха цихлиды. Для этого в резервуар, из которого вода поступала в аквариум с гуппи, либо помещали эту хищную рыбу, либо оставляли его пустым. В результате подопытные рыбки из популяции 1 оказывались либо в привычной для себя обстановке, чувствуя близость хищника, либо в новой, где запах хищника отсутствовал. Ученые сравнили экспрессию 135 генов в этих двух случаях, получив таким образом представление о ее фенотипической пластичности. Иными словами, оценили ненаследственные изменения экспрессии в ситуации, когда из водоема вдруг исчезают хищники.

Тут‑то и выяснилось самое интересное. У подавляющего большинства анализируемых генов (120 из 135, или 89 %) прижизненное ненаследственное изменение экспрессии оказалось направлено в сторону, противоположную эволюционно выгодной. Допустим, например, что хищник надолго исчез из водоема и под действием отбора за несколько поколений экспрессия какого‑то гена увеличилась. Как поведет себя тот же ген у рыбки, привыкшей к хищникам, если вдруг поместить ее в среду без хищников? Как оказалось, его экспрессия, скорее всего, уменьшится. А если у другого гена в первой ситуации экспрессия уменьшается, то во второй – увеличивается. Что касается тех 15 генов, у которых экспрессия изменилась в ту же сторону, что и в ходе эволюции, то они не слишком сильно выбиваются из общей закономерности, поскольку их фенотипическая пластичность оказалась очень слабой, почти нулевой.

Таким образом, выявилась строгая отрицательная корреляция между изменением экспрессии генов под действием отбора и изменением при непосредственном воздействии того же фактора среды, которым определяется направленность отбора (рис. 21.1). Проще говоря, почти вся выявленная фенотипическая пластичность оказалась неадаптивной!

Все, что выгодно увеличить при исчезновении хищников и что действительно увеличивается за несколько поколений жизни в безопасном ручье под действием отбора, на коротком отрезке жизни рыбки, столкнувшейся с отсутствием хищников, почему‑то уменьшается, и наоборот.

Однако в полученных результатах нет никакой мистики. Они, разумеется, не означают, что фенотипической пластичности внутренне присуща какая‑то особая вредоносность. Они означают совсем другое: по‑видимому, неадаптивная пластичность является мощным фактором, ускоряющим эволюционные изменения признаков.

 

рис. 21.1. Эволюционные изменения уровня экспрессии 135 генов гуппи в ходе адаптации к жизни без хищников (вертикальная ось) отрицательно коррелируют с исходной фенотипической пластичностью в предковой популяции (горизонтальная ось). Каждый кружок соответствует одному гену. Черными кружками обозначены 15 генов, у которых эволюционные и пластические изменения экспрессии оказались однонаправленными (а не разнонаправленными, как у всех остальных). Видно, что для этих 15 генов характерна минимальная пластичность экспрессии. По рисунку из Ghalambor et al., 2015.

 

Направленность пластических изменений в основном случайна. Ведь рыбки в природе очень редко сталкиваются с внезапным исчезновением всех хищников в водоеме и очень редко переселяются в новый водоем, где количество хищников резко отличается от привычного. Поэтому у отбора не было возможности обеспечить гуппи надежным механизмом адаптивной пластичности. Новый стимул – отсутствие запаха хищника – автоматически приводит к пластическим изменениям, направленность которых не находилась до сих пор под действием отбора и потому случайна (не в том смысле, что у нее вообще нет причин, а в том, что причины никак не связаны с ее полезностью или вредностью). Однако от этой направленности во многом зависит дальнейший ход эволюции. Если пластическое изменение оказалось неадаптивным, отбор будет сильнее действовать на признак, смещая его в сторону оптимума. Соответственно, признак будет быстрее эволюционировать. Если же ненаследственное изменение случайно приблизило признак к оптимуму, то действие отбора на признак будет слабее и его эволюция будет идти медленнее. Именно поэтому для большинства признаков, продемонстрировавших быстрый эволюционный ответ на изменение обстановки, оказалась характерна неадаптивная пластичность. Неадаптивный характер пластичности здесь – причина, а быстрая эволюция – следствие.

Если эти рассуждения верны, следует ожидать, что в ходе адаптации к отсутствию хищников фенотипическая пластичность рассмотренных признаков (уровней экспрессии 135 генов) должна уменьшаться. Ведь степень пластичности признака сама является наследственным признаком, способным эволюционировать под действием отбора. В зависимости от обстоятельств отбор может содействовать как увеличению пластичности (расширению нормы реакции), так и ее уменьшению (стабилизации признака). У рассматриваемых 135 генов пластичность экспрессии неадаптивна в среде без хищников, то есть в этих условиях снижает приспособленность. Значит, отбор должен работать против нее – он должен стремиться сузить норму реакции. Это предсказание было проверено и подтвердилось: пластичность уровня экспрессии изученных генов в популяциях 3 и 4 уменьшилась в среднем на 11 %. Этот результат показывает, что интерпретации ученых, скорее всего, верны: неадаптивная пластичность действительно служит мощным фактором, направляющим и ускоряющим эволюцию признаков. Адаптивная пластичность, напротив, должна ослаблять действие движущего отбора на признак и замедлять его адаптивную эволюцию.

Помимо общетеоретического значения, данная работа может иметь и практическое, связанное с построением предсказательных эволюционных моделей. Исследование показало, что направленность эволюционных изменений (обусловленных, к примеру, глобальным потеплением) можно предсказывать, зная характер фенотипической пластичности. Еще одно потенциально важное практическое применение подобных результатов касается нашей собственной диеты и пищевых адаптаций. Неадаптивная фенотипическая пластичность проявилась, когда в XX веке новые виды высококалорийной пищи в изрядных количествах были привнесены в рацион многих человеческих популяций. При переходе к пищевому изобилию первое поколение едоков заработало многочисленные проблемы, связанные с пластичностью метаболизма, – от ожирения и диабета до сердечно‑сосудистых заболеваний. Все это неадаптивные изменения фенотипа в ответ на новые условия. Потребовалось несколько поколений (порой всего 2–3), чтобы эти вредные фенотипические симптомы в некоторых популяциях начали сглаживаться (Kopelman, 2000). Однако мы пока не слишком глубоко понимаем конкретику этих сложных процессов. С этой точки зрения исследования, подобные описанному эксперименту на тринидадских гуппи, исключительно наглядны и полезны. Но для глобальных обобщений время еще не пришло.

 

Исследование № 22


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: