Глава 12 Молекулярная биология

 

Каждый, кто питает к биологии не просто поверхностный интерес, знает, что молекулярная биология была и остается величайшим достижением в биологии со времен создания теории эволюции. Важность молекулярной биологии и откровенное высокомерие тех, кто ею занимается, вызвали зависть и досаду у многих старомодных биологов, но, хотя в молекулярной биологии и есть что-то от новоиспеченного богача, сами ее богатства сомнений не вызывают.

Гунтер Стент, один из наиболее тонких ее историков, различает в развитии молекулярной биологии два основных направления: структурное (главным образом европейское) и информационное, т. е. занимающееся вопросами хранения и передачи наследственной информации в биологических системах (последнее, вероятно, достигло наибольшего развития в США).

Структурная молекулярная биология, пожалуй, получила свое начало, когда У. Т. Эстбюри отважно применил методы рентгеноструктурного анализа к таким биологическим объектам, как перья, волосы, сухожилия и волокна кровяного сгустка. Важнейший результат работ Эстбюри — открытие, что изученные им биологические структуры имеют в сущности кристаллическую упорядоченность. Это придало особую соль знаменитому афоризму Шредингера: «Так называемые аморфные твердые тела на деле либо не аморфны, либо не тверды». Исследования Эстбюри навсегда уничтожили идею о существовании нерушимой границы между физическими объектами и веществами живого мира — такой переворот в понятиях сходен с тем, который, как утверждают (задним числом), произвел осуществленный немецким химиком Фридрихом Вёлером в 1828 году синтез мочевины, но по значению далеко его превосходят. {108}

Установление структуры белков — работа, которая когда-нибудь даст нам возможность объяснять большинство протекающих в организме химических изменений на молекулярном уровне, — стало возможным благодаря целому ряду отдельных открытий; одним из них была разработка английским биохимиком Фредериком Сангером химических методов определения последовательности белков, т. е. определения последовательности распределения различных составляющих их аминокислот вдоль полипептидной цепи, что дает возможность определять структуру белков в линейном направлении, известную как первичная структура. Вторичной структурой называют дополнительную детализацию основания, особенно в том, что касается его разветвлений. Третичная структура белка — это общий рисунок его изгибов, выпячиваний и т. д. и полное его определение как трехмерной структуры. Когда английские биохимики Макс Перуц и Джон Кендрю, исследуя миоглобин, впервые дали исчерпывающее представление о пространственном строении белковой молекулы, специалисты по молекулярной биологии расценили их работу как важную веху в истории биологии. С тех пор Р. Валентайн и X. Г. Перейра довольно хорошо разъяснили строение одного из вирусов — аденовируса 12.

У. Т. Эстбюри попытался установить строение нуклеиновых кислот, но рентгеноструктурный анализ и расшифровка кристаллограмм были тогда слишком примитивными, а применявшиеся методы приготовления ДНК — слишком грубыми, так что успеха он не добился. Окончательное объяснение строения ДНК родилось из химических исследований американского биохимика Эрвина Чаргаффа и рентгеноструктурных анализов Фрэнсиса Крика и Джеймса Уотсона в Кембридже, а также Мориса Уилкинса и Розалинд Франклин в лондонском Кингз-колледже. Установление ее пространственной двухспиральной структуры стало двойным триумфом, так как оно одновременно разрешило кристаллографическую проблему и дало подходящую структурную основу для истолкования уникальной функции ДНК как носителя генетической информации.

Информационное направление в истории молекулярной биологии сложилось, когда Эвери, Маклеод {109} и Маккарти открыли, что дезоксирибонуклеиновая кислота представляет собой своего рода биологический философский камень, поскольку выяснилось, что именно ДНК вызывает трансформацию одной разновидности пневмококков в другую (см. гл. 11) — до тех пор это явление ставило всех в тупик. На протяжении нескольких следующих лет изучение бактерий и вирусов, а также обычные генетические исследования неопровержимо доказали, что ДНК — действительно хранилище наследственной информации и средство передачи ее от одного поколения к другому. Не считая ничтожного количества ДНК в митохондриях, вся ДНК животных клеток, в том числе и зародышевых, сосредоточена в ядре, как и следовало ожидать, учитывая тот факт, что ядро зародышевой клетки — это единственное материальное звено, связывающее поколения.

В молекулярной биологии общепринято положение, что генетически зашифрованная информация передается только в одном направлении — от нуклеиновой кислоты к белку, но не наоборот. Обычные биологи долго не принимали этого взгляда: они были чрезвычайно недовольны тем, что белки свергнуты со своего трона и им уже больше не приписывается то осуществление всех химических преобразований в организме, которое прежде представлялось их естественным правом. Согласно этому новому взгляду, нуклеиновые кислоты должны определять строение всех белков, производимых в клетке. Очень важная часть молекулярной биологии, называемая иногда «молекулярной биохимией» (попробуйте представить себе немолекулярную биохимию!), занимается определением средств, с помощью которых строение той или иной нуклеиновой кислоты в конечном счете картируется в строении того или иного белка.

Поскольку в белках существует более двадцати различных аминокислот, а в ДНК только четыре разных вида нуклеотидов, каждая аминокислота должна кодироваться более чем одним нуклеотидом, а точнее, триплетом их. Процесс картирования протекает в два этапа, и каждый включает перенос информации на нуклеиновую кислоту: транскрипцию, при которой последовательность нуклеотидов ДНК «переписывается» в последовательность нуклеотидов {110} информационной РНК, и трансляцию, протекающую при по» мощи транспортной РНК, молекулы которой опознав ют и аминокислоты, и код РНК, а потому могут собирать необходимые аминокислоты в нужной линейной последовательности. Трансляция генетической информации — это процесс необратимый, и в настоящее время не существует никакого известного или хотя бы мыслимого метода, путем которого в ДНК зародыша могла бы запечатлеться информация, полученная организмом в течение его жизни. Это — главное методическое соображение, из-за которого в наши дни уже никто не верит в возможность эволюции ламаркистского типа (см. гл. 5).

Молекулярная биология достигла такой всеобъемлющей гегемонии, что один выдающийся биолог сказал: «Нынче и музейный служитель может высоко держать голову, только если он называет себя молекулярным таксидермистом».

Заметка о переворотах в биологии. Главная критика молекулярной биологии исходит сегодня от биологов-практиков, которые в свое время точно так же навязывали свою доктринальную тиранию. В эпоху великого последарвиновского возрождения зоологии почти все серьезные биологи считали, будто по-настоящему важная задача заключается в том, чтобы как можно детальнее описывать ход эволюции. В те скверные старые дни многие биологические дисциплины получали право на уважение, только когда их удавалось назвать «сравнительными». Мы помним время, когда паразитология была облагорожена наименованием «сравнительная паразитология», поскольку она давала кое-какие доказательства эволюционного процесса; то же произошло и с иммунологией, когда в трудах Наттола и Бойдена ее начали использовать как средство определения эволюционных связей.

Из-за реакции против сравнительной анатомии сравнительная физиология превратилась в столь же ужасный (если не худший) источник всяческих досад. Едва сравнительная анатомия была дискредитирована, как первейшей обязанностью зоологов стало почитаться понимание физиологии низших животных. Значительная часть этой работы была очень скучной и бескрылой, а движение за сгавнительную физиологию {111} распространялось и распространялось по Англии, потому что специалисты по сравнительной физиологии получали руководящие посты почти на всех зоологических кафедрах — и нередко на тех, которые совсем недавно возглавляли специалисты по сравнительной анатомии. Как часто пустяковые физиологические эксперименты на низших животных проводили те кафедры, которые по своему положению и штатам могли бы внести значительный вклад в общую биологию!

К несчастью, природа каждого академического переворота, по-видимому, требует, чтобы он обязательно превратился в язву, прежде чем его претензии будут наконец устало и с отвращением отвергнуты.

По всей вероятности, то же случится и с молекулярной биологией, каким бы светлым и сияющим ни представлялось нам сейчас ее будущее: придет время, когда изучение структуры белка — и чем причудливее, тем лучше! — превратится в априорно респектабельное занятие, обеспечивающее стремительную карьеру и самые высокие академические почести.

Невозможно предсказать, какими окажутся будущие перевороты, но можно надеяться, что произойдет переворот в понимании некоторых областей биологии, где пока такого понимания нет, и особенно в том, что связано с накоплением памяти и с процессами, благодаря которым от поколения к поколению передаются запрограммированные элементы поведения.

 

Глава 13 Иммунология*

 

Стремительный рост иммунологии за последние десять — пятнадцать лет представляет собой одно из наиболее замечательных явлений в современной науке, хотя с точки зрения истории концепций этот быстрый рост последних лет далеко не так удивителен, как почти полный интеллектуальный застой с начала века до середины 30-х годов. Причина этого, по нашему мнению, заключается в том, что примерно до середины 30-х годов иммунология с точки зрения исследований, обучения и университетской администрации представлялась придатком бактериологии. Поэтому она ограничивалась непосредственным практическим применением и сводилась к вакцинам, кожным пробам, диагностическим антисывороткам, группам крови, аллергическим реакциям... вот, собственно, и все. Ну и, конечно, она не могла не обладать всеми мыслимыми изъянами прикладной науки, которой занимаются без всякого интереса к ее глубоким теоретическим основам. Новая эра началась, когда химики, зоологи и генетики создали совершенно новую систему иммунологических концепций, основными опорами которой стали изучение биологии распознавания «своего», молекулярные основы специфичности и процесс переноса генетической информации в живых организмах. К этим основным областям исследований можно добавить исследование иммунологических возможностей трансплантации, лечение рака и более тонкое генетическое подразделение населения на группы, которое нельзя было бы провести никакими иными методами. {113}

Иммунная реакция — это адаптивный ответ организма, вызывающий разрушение, нейтрализацию, отторжение или уничтожение результатов вторжения некоторых чужеродных факторов, таких, как бактерии, вирусы, паразитические простейшие, пересаженная от других особей ткань, а также, очень возможно, и злокачественные новообразования (см. гл. 14). Вещества, вызывающие иммунную реакцию, называются антигенетическими или — употребляя имя существительное — антигенами. Отличительной характеристикой антигена является его чужеродность, т. е, то, что он «не свой». Однако даже свои компоненты могут иногда вызвать иммунную реакцию, поскольку чужеродность, как характерное свойство, определяющее антиген, означает только его чужеродность для реагирующей системы, и, если некоторые части организма были на протяжении значительной части его жизни изолированы, их высвобождение в результате какого-либо повреждения или дегенеративного процесса дает им возможность проявить свои антигенные свойства. Реакция против таких своих компонентов! называется аутоиммунной. Компоненты организма, измененные химическим воздействием или вирусной инфекцией, также могут вызвать аутоиммунную реакцию.

Общая форма иммунной реакции, которую принято считать (скорее всего, неправильно) типичной (или даже прототипичной), заключается в том, что антиген вызывает образование антитела*. Антитело — это циркулирующий в крови белок, чье строение точно комплементарно (т. е. дополнительно) строению антигена или, вернее говоря, строению той части антигена, которая придает ему его антигенные свойства. Когда антиген и антитело встречаются, может произойти одна из целого ряда различных реакций: агглютинация, или склеивание, если антигены являются клетками; иногда разрыв клеточных оболочек, совместное осаждение, если антиген тоже растворимый белок, или же детоксикация, если антиген представляет собой ядовитое вещество (токсин), вырабатываемое {114} бактерией. Конечным результатом в случае успешной иммунной реакции будет разрушение антигена или уничтожение его действия. Телеологическое правило «чужой — плохой» оказалось очень надежным — ведь теперь известно, что иммунная активность чрезвычайно важна для жизни: некоторые дети рождаются без способности вырабатывать антитела и их удается сохранять живыми только с помощью антибиотиков или массированных переливаний нормальной крови или ее составных частей, содержащих антитела.

С участием антител идут две важнейшие иммунные реакций: лизис, т. е. механическое разрушение антигенных клеток и высвобождение их содержимого в окружающую среду, и фагоцитоз — процесс, при котором антигенные частицы активно захватываются и поглощаются, часто перевариваются и в любом случае обезвреживаются макрофагами, или полиморфами (см. гл. 16). Процесс лизиса осуществляется очень сложным и неустойчивым компонентом крови, так называемым комплементом, который действует, только когда его активирует специфическое антитело; процесс фагоцитоза очень облегчается и ускоряется, если частицы, которые должны быть поглощены фагоцитами, облепляются особыми антителами, предназначенными для борьбы с ними. «Стимулируйте фагоциты!» — этот клич сэра Коленсо Риджена в пьесе Бернарда Шоу «Врач перед дилеммой» в. значительной степени означает призыв стимулировать образование специфических антител.

Клеточный иммунитет. Долгие годы антигены и антитела настолько полно владели умами иммунологов, что исключали даже самую смелую мысль о возможности других иммунных ответов, но теперь известно, что имеется совершенно иной вид иммунной реакции, осуществляемой путем воздействия не антител, а лимфоцитов, которые враждебны антигенам и носителям антигенов и вызывают их разрушение. Иммунная реакция, осуществляемая фагоцитами, так же специфична, как и реакция, осуществляемая циркулирующими в крови антителами. Именно клеточный иммунитет вызывает отторжение пересаженной ткани, разрушает внутриклеточных паразитов, обеспечивает невосприимчивость к туберкулезу, {115} а возможно, и противоопухолевый иммунитет (см. гл. 14); с другой стороны, гуморальный, т. е. осуществляемый антителами, иммунитет, по-видимому, защищает нас от большинства обычных бактериальных и вирусных инфекций.

Лимфатическая система. Клетки, распознающие антиген и реагирующие на него тем или иным образом, принадлежат к лимфатической системе — системе клеток, типичным членом которой является лимфоцит.

Распознавание антигена. Даже когда речь шла об образовании антител (процессе, в своей основе гораздо более простом, чем иммунный ответ клеток), решение информационной проблемы — каким образом распознается антиген и каким образом синтезируется точно комплементарная к нему структура — было далеко не очевидным. Проблема эта была бы не столь сложной, если бы разнообразие антигенов было ограниченным и требовало образования того или иного антитела из ограниченного числа возможных вариантов, но трудность заключается в том, что антигены столь же разнообразны, как разнообразны сами живые организмы, а организм способен вырабатывать антитела даже против прежде не существовавших антигенов — например, против синтезированных органических соединений, которые каждый год производятся во все большем изобилии и способны придавать антигенные свойства любой макромолекуле, стоит им к ней прикрепиться. До возникновения молекулярной биологии проблема не представлялась такой уж головокружительно сложной — тогда предполагалось, что антиген может сам сообщать структуру необходимого антитела, т. е. что он способен сам давать информацию, управляющую синтезом молекулы антитела, и что молекула антитела может строиться вокруг антигена и непосредственно на его поверхности, получая, таким образом, точно комплементарную к нему структуру. Крупнейший американский химик-теоретик Лайнус Полинг одно время считал такой процесс вполне возможным и придумал остроумную модель того, как молекулы антител в присутствии антигена сами меняют свою форму. Это было инструктивной, или «ламаркистской», интерпретацией всего процесса, весьма согласной со здравым смыслом, но когда {116} стало ясно, что информация не может передаваться от белка к белку, а передается только от нуклеиновой кислоты к белку, пришлось искать какое-то другое объяснение. Одна из возможностей такова: в процессе своего развития лимфоидные клетки случайным образом становятся столь разнообразными, что каждому возможному антигену уже соответствует какая-то лимфоидная клетка, а следовательно, и потенциальный «клон», т. е. целый ряд поколений лимфоидных клеток, способных вырабатывать комплементарные к этому антигену антитела. Такое разнообразие может возникнуть путем мутаций в линии клеток, ведущей от оплодотворенного яйца к миллиардам лимфоцитов взрослого организма, или же путем мутаций в каком-то более мелком, чем ядро, компоненте клетки. В любом случае такой предполагаемый процесс означает, что лимфоидные клетки, обладающие колоссальным количеством потенциально возможных реакций, уже имеются в наличии и только ждут встречи с антигеном, чтобы полностью развернуть свою активность. Это объяснение несомненно дарвинистское, т. е. оно опирается на случайные изменения и на отбор, и весьма показательно, что одна из самых первых научных статей по этому вопросу, вышедшая из-под пера Нильса К. Ерне, была озаглавлена: «Теория естественного отбора в образовании антител». Однако предположение о случайных вариациях в линии клеток, возникающих из зиготы и порождающих взрослые лимфоидные клетки, — не единственная возможность; вполне вероятно, что вся информация, необходимая для того, чтобы обеспечить выработку антител, уже содержится в оплодотворенном яйце и затем поровну распределяется во всех происходящих от него лимфоидных клетках. На первый взгляд это кажется, пожалуй, чересчур сложным, но только До тех пор, пока мы не вспомним о колоссальном разнообразии и тонкости информации, закодированной в ядре зиготы, — например, о том, что все сложности женского поведения (в той мере, в какой они запрограммированы) заложены в коде мужской зиготы (и наоборот) и ожидают момента, когда они будут высвобождены и активизированы соответствующим внешним стимулом, или же о тех почти невероятно тонких нюансах процесса развития, которые позволяют {117} сказать, что нос у младенца точь-в-точь мамин, а улыбка совсем как у дядюшки. Если такое предположение верно, из него следует, что антиген воздействует на лимфоидную клетку почти точно таким же способом, каким действует зародышевый индуктор (см. гл. 9), и так же, как последний, пробуждает в реагирующей на него клетке ту или иную из заложенных в ней возможностей.

Иммунологию, выросшую в ясном осознании знаменитой догмы молекулярной биологии о направлении потока информации, один из ее основоположников — австралийский вирусолог и иммунолог Фрэнк Макфарлейн Бернет — назвал «новой иммунологией». Поскольку проблемы, с которыми сталкиваются обе эти науки, в определенном аспекте почти родственны, не удивительно, что микробиологи, например Жак Моно и Джошуа Ледерберг, тоже оказались среди тех, кто сыграл немалую роль в основании этой новой науки. Пожалуй, величайший вклад Бернета в биологию заключается именно в том, что он заставил иммунологов заново пересмотреть весь механизм иммунного ответа в свете популяционной динамики лимфоидных клеток и навсегда отбросить его ламаркистскую интерпретацию.

Хотя вопрос еще окончательно не решен, можно считать твердо установленным (если только не будет вдруг обнаружен некий никому даже не грезившийся механизм), что реакция на любой самый странный и экзотический антиген представляет собой пробуждение или активацию какой-то ранее уже существовавшей в реагирующей клетке потенциальной возможности и ни в каком смысле не информирование клетки какими-либо молекулярными особенностями антигена.

Трансплантационный иммунитет и толерантность. Химический состав органов одного человека как будто настолько сходен с составом органов другого, что явление отторжения пересаженного органа вызывает удивление — настолько глубокое, что хирурги очень долго не могли в него поверить. Они считали, что неудачная пересадка — это результат хирургической, ошибки, а вовсе не выражение способности организма с невероятной точностью обнаруживать «не свое». Конечно, это вовсе не значит, что при пересадке {118} можно недооценивать важность — и как выяснилось, все возрастающую важность — умения хирурга. Тем не менее иммунный элемент по своей значимости перевешивает все остальное. К другим факторам, имеющим большое практическое значение, относятся следующие: выполнима или нет данная операция физиологически и возможно или нет использовать искусственный орган, чтобы помочь пациенту выдержать период отключения его собственного органа, без чего перебой в нормальной работе организма мог бы существенно ухудшить его состояние. Пересадка мозга относится исключительно к области научной фантастики: она неосуществима сейчас и нет никаких серьезных оснований ожидать ее осуществления в будущем. Что касается искусственных органов, то пересадка сердца, естественно, не стала бы возможной, если бы не появились аппараты, способные поддерживать снабжение организма кислородом. К сожалению, для печени никакой замены нет, хотя и делались попытки использовать свиную печень вне тела больного — примерно таким же образом, как искусственную почку. Пересадки почек получили сильный толчок благодаря изобретению искусственной почки, так как теперь почечного больного можно положить на операционный стол в состоянии достаточно хорошем, чтобы он выдержал необходимые лечебные процедуры. Среди тех лечебных процедур, на которые опирается вся современная пересадка тканей, огромную роль играет использование иммунодепрессивных средств — лекарственных препаратов, подавляющих иммунную реакцию организма на достаточно долгий срок, чтобы пациент выдержал период, в течение которого пересаженный орган может подвергнуться отторжению, и одновременно помогающих этому органу вступить в таинственный адаптационный процесс, завершающийся тем, что он становится приемлемым для организма. Большинство иммунодепрессантов, используемых в трансплантационной хирургии, — это средства, предотвращающие деление клеток и тем самым мешающие полному проявлению иммунных реакций. За очень редкими исключениями, они заимствованы из обширного арсенала противораковой химиотерапии. Препарат, шире всего употребляемый теперь по всему миру, был введен профессором {119} Р. Й. Колном после многочисленных пересадок почек у собак. Это имуран, производное 6-меркаптопурина, который настолько сходен с одной из важных составных частей нуклеиновой кислоты, что нарушает процесс деления клеток. В дополнение к имурану обычно употребляют стероидные препараты, сходные по характеру своего действия с кортизоном; дозировка их обязательно увеличивается, если существует хоть какое-то подозрение, что пересаженный орган начинает отторгаться, так как стероидные препараты способны повернуть вспять процесс отторжения. Однако использование стероидных препаратов нежелательно из-за их чрезвычайно неприятного побочного действия, да и вообще результаты применения иммунодепрессантов пока еще оставляют желать много лучшего. Режим дозировки — это хождение по лезвию ножа, так как слишком низкие дозы не предотвращают отторжения пересаженного органа, а слишком высокие ведут к вторичным повреждениям клеток, не участвующих в иммунной реакции отторжения, и в частности кроветворных клеток. В довершение всего существует опасность, что иммунодепрессия может слишком ослабить иммунную защиту организма и больной станет легкой добычей какой-нибудь инфекции. Беда в том, что, за единственным исключением, не известно ни одного подлинно иммунодепрессивного средства, т. е. средства, которое подавляло бы иммунную реакцию, не подавляя многого другого. Единственное исключение представляет собой антилимфоцитарная сыворотка, которая эффективно подавляет описанный выше клеточный иммунитет — а именно он и вызывает отторжение пересаженного органа. К несчастью, антилимфоцитарная сыворотка имеет свои серьезные недостатки, и не последний из них заключается в чрезвычайно высокой плате за курс инъекций (примерно тысяча фунтов). Однако даже в странах, где не существует государственного здравоохранения, несомненно, нашлись бы средства, чтобы как-то обойти эти трудности, если бы можно было доказать, что антилимфоцитарная сыворотка или полученный из нее активный белок полностью безопасны и гораздо более эффективны, чем любая комбинация известных препаратов. {120}

Методы иммунодепрессии постоянно совершенствуются, и можно считать доказанным, что в случае необходимости пересадки сердца, печени и легких станут столь же частыми и успешными, как сейчас пересадки почек. Как ни странно, единственная ткань, которая до сих пор не поддается никаким попыткам пересаживать ее от одного человека к другому, — это кожа. Либо в ней чрезвычайно легко пробуждается иммунологическая реакция, либо она особенно уязвима для такой реакции.

Еще одно достижение науки, которое внесет важный вклад в успешную пересадку — это улучшение определения групп тканей, т. е. разделение людей по типам факторов, вызывающих иммунный ответ, примерно таким же образом, как их разделяют по группам крови для переливания. Такие исследования ведут Чепеллини в Турине, Доссе в Париже, Эймос в Университете Дьюка, ван Роод в Бельгии, Бэтчелер в Англии и некоторые другие. Время от времени все исследователи групп ткани собираются, чтобы сообщить друг другу результаты своей работы и свое мнение, — нередко, естественно, мнение, что их собственная система несравненно лучше всех других. По группам тканей человеческая популяция подразделяется даже еще более точно, чем по группам крови, и генетические единицы такого подразделения оказываются гораздо более мелкими и единообразными, чем какие-либо другие. Вот почему пересадка органа от одного индивидуума к другому обязательно терпит неудачу, если только не будут применены иммунодепрессивные средства или если донор не является однояйцевым близнецом реципиента. По тем же чисто генетическим причинам пересадка органов одного родственника другому обычно бывает более успешной, чем при отсутствии родства между донором и реципиентом.

Поиски донора — это вечный камень преткновения при пересадке почек, и, к сожалению, проблема оказывается еще более трудной, когда речь идет о пересадке сердца и печени. Она очень облегчилась бы, если бы удалось найти способ сохранения ткани без всякого повреждения при температурах — 70 или — 190°С; такие температуры указаны не случайно — это те низкие температуры, которые можно обеспечить {121} обычным способом (соответственно температура твердого углекислого газа и жидкого азота).

Группа крови — еще одна форма врожденных различий между людьми, сходная с той, которая не позволяет пересаживать органы одного человека другому. О разделении людей на группы А, В, АВ и 0 — из-за значения, которое оно имеет при переливании крови, — слышали все. Но это лишь группы крови, открытые первыми, а с тех пор систематические исследования чрезвычайно увеличили их число, и, добавив такие группы, как Келл, Даффи, MN и все разнообразие резусных групп, мы можем теперь с полным правом сказать, что общее число комбинаторных различий между разными группами крови превосходит число живущих на земле людей. Буквы А и В означают антигены, присутствующие в красных кровяных клетках. Эти антигены обычно не имеют случая пробудить иммунную реакцию, ибо только в крови людей, у которых отсутствуют эти антигены, находятся соответствующие антитела; у людей с группой крови В в сыворотке крови циркулируют антитела, действующие против антигенов А, а у людей с группой крови А — наоборот. Кровь группы 0 (в которой отсутствуют оба вида антигенов) содержит антитела, действующие против клеток А и В. Если взять взвесь из красных кровяных клеток и смешать ее с антителами, действующими специфически против этих красных кровяных клеток, происходит агглютинация — они слипаются между собой. Это приводит к серьезным затруднениям при переливании крови, так как в случае, если, например, человек с кровью группы В получит кровь группы А или наоборот, последствия будут очень тяжелыми; с другой стороны, человек с группой крови АВ может принять кровь от донора любого из этих двух типов, а человек с группой крови 0 — вообще универсальный донор. Антигены резусной* серии печально знамениты своей способностью вызывать у новорожденных гемолитические {122} заболевания, которые в относительно небольшом проценте браков между резус-отрицательной матерью и резус-положительным отцом чаще поражают вторых и более поздних детей. При этом происходит, по-видимому, следующее: на какой-то стадии беременности — возможно, непосредственно при родах — кровяные клетки плода, содержащие один из сильнейших резусных антигенов, проникают в материнскую резусную систему и вызывают иммунизацию матери. Теперь мать заранее вооружена иммунологическим механизмом, очень похожим на механизм, обычно не допускающий повторного заболевания корью, — новое соприкосновение с резусными антигенами, происходящее при последующей беременности, вызовет более мощную и быструю реакцию антител. Возникшие таким образом антитела могут проникнуть в кровеносную систему плода и вызвать тяжелые повреждения его красных кровяных клеток, а также желтуху, одновременно стимулируя деление эритробластов — клеток, которые вырабатывают красные кровяные клетки (поэтому для обозначения гемолитического заболевания, вызванного резусной несовместимостью, обычно употребляется термин эритробластомоз новорожденных). Если о риске сенсибилизации резусных антигенов матери известно заранее, этого можно избежать с помощью придуманной иммунологами остроумной процедуры: матери вводятся антирезусные антитела, которые разрушают красные кровяные клетки, несущие резусный антиген, едва они попадут в материнскую кровеносную систему.

Телеология групп крови. Причина возникновения различных групп крови и значение их для выживания, т. е. особая функция, выполняемая такой дифференциацией, до сих пор еще не поняты, и никто толком не знает, в чем может заключаться польза от разделения людей по группам крови. Правда, какое-то объяснение может дать тот факт, что сенсибилизация резус-отрицательной женщины резус-положительным плодом случается реже, если АВО группы крови матери и плода несовместимы. Причина этого, возможно, заключается в следующем: если, например, красные кровяные клетки плода не только резус-положительны, но еще и принадлежат к группе А, а красные кровяные клетки матери принадлежат {123} к группе О или В, то красные кровяные клетки плода, попавшие в ее кровеносную систему, будут быстро уничтожены уже имеющимися в ней анти-В антителами. Таким образом, один тип дифференциации между группами крови способен уничтожить вредные последствия другого типа дифференциации. Это, однако, не может дать общего объяснения разнообразию групп крови.

Понятие «толерантность». Макфарлейн Бернет проявил блистательную прозорливость, когда предположил, что в развитии клеток, ответственных за иммунные реакции, должен существовать какой-то механизм, подавляющий любую тенденцию этой системы реагировать на свои компоненты. По мысли Бернета, если бы какое-то антигенное вещество присутствовало у зародыша достаточно рано, то оно принималось бы как свое и в дальнейшей жизни уже не вызывало бы иммунной реакции. Мысль эту ему подсказали работы известного зоогенетика доктора Рея Д. Оуэна (Мадисон, шт. Висконсин) об исключительных свойствах телят-близнецов. Телята-близнецы, как и человеческие близнецы, бывают двух видов: монозиготные, или однояйцевые, генетически идентичные и обязательно одного пола, начавшие жизнь как единая особь и из-за какой-то в остальных отношениях безобидной случайности разделившиеся и превратившиеся в две особи, и дизиготные, или разнояйцевые, близнецы, которые развиваются из отдельных оплодотворенных яиц и похожи друг на друга не более, чем все другие братья и сестры, — это просто два обычных теленка. Замечательное открытие Оуэна заключалось в том, что у каждого из близнецов имеются эритроциты двух разных антигенных типов: один — его собственный, а другой — тип его близнеца. Животного, в организме которого имеются клетки, происходящие от двух разных оплодотворенных яиц, называют химерой. Разнояйцевые телята — химеры, потому что у одного имеются эритроциты другого и наоборот. Оуэн ясно понял, как возникло такое необычное положение: зародыши телят делят между собой одну плаценту, в результате их кровеносные системы сообщаются и между близнецами происходит обмен кровью. Иными словами, получается естественный эксперимент, словно бы нарочно {124} предназначенный для проверки гипотезы Бернета! каждый близнец на очень ранней стадии эмбрионального развития передал другому свои особые антигены и у обоих произошло отключение способности реагировать на клетки друг друга. Поэтому клетки крови и кроветворные клетки, которыми они обменивались в период эмбрионального развития, могут жить в каждом из них и гораздо позже их рождения, содействуя таким образом возникновению и поддержанию состояния химеры. Объяснение это стало еще более убедительным, когда мы с Рупертом Биллингемом и двое наших молодых коллег из Совета по сельскохозяйственным исследованиям показали, что разнояйцевые телята не отторгают пересаживаемую от одного к другому кожу, в то время как обычно у коров кожа, пересаженная от других животных того же вида, бурно отторгается. Такая толерантность высокоспецифична, т. е. близнец, не отторгающий кожу, пересаженную от второго близнеца, за десять дней отторгает кожу, пересаженную от любого другого теленка. Затем исследователи в Копенгагене показали, что у разнояйцевых телят-близнецов не отторгаются пересаживаемые от одного к другому почки и, следовательно, взаимное перемешивание крови в период до их рождения отключает у каждого близнеца способность реагировать на другие ткани, а не только на кровь.

Человеческие близнецы тоже, хотя и очень редко, оказываются химерами, и тогда у них тоже, как показал Вудрефф, пересаженная от одного к другому кожа не отторгается. Это справедливо и для близнецов-цыплят, т. е. для цыплят, вылупившихся из одного двухжелткового яйца. Таким образом, взаимная толерантность химер не является исключительной особенностью коров.

Однако идея Бернета стала общепринятой, только когда явление, наблюдаемое у телят-близнецов в естественных условиях, удалось повторить в заранее спланированном эксперименте. Был поставлен вопрос: какова будет реакция взрослого животного на антиген, с которым оно уже сталкивалось на очень ранней стадии своего эмбрионального развития? Над этим вопросом работало несколько исследовательских групп, и — надо же было так случиться! — эксперименты {125} самого Бернета не удались, потому что антигены, использованные им для индукции состояния нереактивности в дальнейшей жизни, не удерживались в организме на время, необходимое, как мы теперь знаем, для того, чтобы обеспечить состояние толерантности. С подобными трудностями не столкнулись те из нас, кто работал с живыми клетками, поскольку эти клетки остаются жизнеспособными благодаря преимуществам, которые обеспечивала им индуцированная толерантность. Блистательному чехословацкому биологу-экспериментатору Милану Гашеку удалось преуспеть в создании искусственных близнецов-цыплят: он взял два содержащих зародыши яйца, обнажил небольшие участки сосудистых мембран, через которые осуществляется дыхание зародышей, и установил сосудистый мост между обоими зародышами, наложив кусочек живой ткани, в которую с обеих сторон и проросли кровеносные сосуды. Когда цыплята выросли, органы, которые им пересаживали друг от друга, не отторгались и они были совершенно лишены способности реагировать на эритроциты друг друга — хотя без такого эксперимента у них, несомненно, возникла бы иммунная реакция. Биллингем, Брент и я, используя в экспериментах чистые линии мышей, прививали эмбрионам одной линии смесь живых клеток, взятых у мышей другой линии, и, когда мышата, получившие в эмбриональном состоянии прививку, выросли, они не отторгали органов, пересаженных от мышей той линии, из которой брался материал для прививки. Мы назвали это явление «активно приобретенной толерантностью» по аналогии с «активно приобретенным иммунитетом».

Методики, использованные для создания трансплантационной толерантности у подопытных животных, естественно, неприменимы для людей, и между открытием толерантности и нынешними успехами в пересадке органов не существует прямой причинной связи. Наоборот, эффект этого открытия был почти.чисто моральным: экспериментальная индукция толерантности показала (хотя ранее это представлялось весьма и весьма сомнительным), что барьер, обычно стоящий на пути пересадки органов одного индивидуума другому, действительно можно преодолеть. До открытия толерантности можно было {126} категорически утверждать — как некоторые это и дела» ли, — что дерзкие замыслы, воплощенные в экспериментальных пересадках органов, никогда не удастся осуществить на деле, а потому от поисков путей для обхода трансплантационного барьера можно просто отмахнуться, объявив, что все это лишь погоня за химерой, чем они, впрочем, и оказались в действительности, как было рассказано выше.

Ошибки иммунного процесса. Хотя иммунные реакции необходимы для жизни, сами иммунные процессы проявляются более ясно, когда они протекают не так, как следовало бы, чем когда все идет как полагается. Было бы, конечно, нечестно подводить несчастные случаи при переливании крови и отторжения пересаженных органов под рубрику адаптационных ошибок иммунного процесса, поскольку они происходят по нашей вине и только в созданных нами же самими условиях. Справедливо обвинять природу мы можем лишь в том случае, когда речь идет о гемолитическом заболевании новорожденных. Главные отклонения или плохая адаптация иммунного процесса — аллергии, повышенная чувствительность и аутоиммунные реакции. Все это может в той или иной форме рассматриваться как цена, которую мы платим за то, что обладаем реагирующей системой, наделенной тончайшей чувствительностью, необходимой для того, чтобы различать не свои компоненты и реагировать на них. Наиболее обычные аллергические реакции вызываются пыльцой растений, перхотью, домашней пылью и некоторыми пищевыми продуктами: хорошо известны аллергенные свойства яиц, устриц, рыбы и некоторых фруктов. В аллергической чувствительности очень силен элемент индивидуальности. У человека, страдающего каким-либо видом аллергии, гораздо больше шансов заболеть другим ее видом, чем у остальных членов той же популяции. Гиперчувствительность замедленного типа — это аллергии совершенно иного рода. В самой обычной своей форме (например, при сенсибилизации к некоторым химическим промышленным веществам, таким, как динитрохлорбензол) они вызывают плотные, красные и нередко весьма болезненные припухлости кожи. Своей способностью пробуждать реакции замедленного типа известны некоторые бактериальные антитела, {127} и болезненная зона покраснения вокруг фурункула часто представляет собой именно такую реакцию. Это — следствие клеточного иммунитета. Компоненты возбудителя туберкулеза особенно активно вызывают повышенную чувствительность замедленного типа, и это их свойство с успехом используется для так называемой реакции Манту, при которой в кожу вводится ничтожное количество экстракта туберкулезных микобактерий (туберкулина); однако положительную реакцию дает всякий, кто когда-либо в прошлом подвергался воздействию туберкулезных бактерий, и поэтому ее не следует обязательно считать свидетельством активной формы туберкулеза. Изучение реакции на туберкулин и вообще иммунитета к туберкулезу оказало глубочайшее влияние на всю историю иммунологии; это явление настолько головоломно, что оно привлекло в иммунологию многих блистательнейших медиков-экспериментаторов. В недавнее время то же действие оказало изучение Трансплантаций, а также противоопухолевого иммунитета. Самая действенная форма рекрутирования исследователей — это не обещание легкого, успеха, но вызов их интеллектуальным способностям. Хотя такое обобщение звучит сентенциозно, подтверждение ему снова и снова встречается в истории биологии: вспомните, например, приток биологов в эмбриологические исследования в 30-х годах XX века, в этологию — в 40-х и в молекулярную биологию — в наши дни.

Аутоиммунные заболевания предположительно возникают по двум различным причинам. Первая — если естественный механизм толерантности не срабатывает или оказывается случайно обойденным. Когда потенциально антигенные компоненты тканей, до тех пор анатомически или иным способом укрытые от системы иммунных реакций, получают к ней доступ и вызывают такую иммунную реакцию, которая сама по себе может причинить еще больший вред и тем самым усилить иммунную реакцию, — это положительная обратная связь. Возможно, что именно подобного рода ситуация возникает при аутоиммунном тироидите (зоб Хашимото), и, по-видимому, им объясняется воспалительное заболевание глаза, известное как симпатическая офтальмия — когда оставшийся {128} неповрежденным глаз слепнет некоторое время спустя после того, как другому было нанесено проникающее ранение.

В других случаях аутоиммунное заболевание может возникнуть из-за прикрепления к нормальному компоненту организма каких-то веществ или агентов, придающих ему качество антигенности. Так в основном и случается, когда кожа загрязнена химическими аллергенами, которые упоминались выше как возможная причина реакции гиперчувствительности замедленного типа: это особенно интересно, поскольку такие химикаты сами по себе часто не обладают антигенными свойствами и получают их, только прикрепляясь к тем или иным компонентам организма. Но гораздо важнее то, что клетки тела — особенно нервные клетки, нейроны, — могут получить антигенные свойства в результате вирусной инфекции. Очень многие исследователи считают, что главная доля ущерба, который терпит нервная система при полиомиелите и рассеянном склерозе, может быть следствием аутоиммунной реакции именно такого типа. Другие заболевания, при которых, как считается, большую роль играет аутоиммунная реакция, — это ревматоидный артрит и склеродермия.

Казалось бы, лечение аутоиммунных заболеваний должно сводиться просто к введению иммунодепрессивных средств. Но на самом деле все гораздо сложнее, потому что, подавляя образование антител, очень легко подавить механизм, помогающий держать под контролем клеточный иммунитет, а перед тем как начинать всеобъемлющее подавление клеточного иммунитета, мы, естественно, не можем не испытывать довольно-таки мрачных предчувствий относительно последствий, к которым может привести подобная процедура. Именно поэтому созданы научно-исследовательские институты, ведущие «фундаментальные» медицинские изыскания, цель которых сводится лишь к тому, чтобы врач-практик получил какое-то теоретическое представление о том, что он, собственно, делает и каким путем может проще всего добиться желаемых результатов. Бесплодие иммунологии на протяжении первых трех десятков лет XX века и последовавший затем ее замечательный расцвет могут послужить уроком и предупреждением для всех {129} тех, кто самоуверенно заявляет, будто лабораторная наука должна ограничиваться непосредственными практическими целями. Благодаря самым обычным (хотя и не до конца понятым) процессам научного исследования иммунология чрезвычайно расширила наши представления о синтезе белков, о молекулярных основах специфичности и о средствах передачи генетической информации в организме от одной клетки к другой. Кроме того, мы можем быть благодарны этим исследованиям за методы безопасного переливания крови, за пересадку органов и за возможность контролировать хотя бы некоторые формы саморазрушающих проявлений иммунных реакций.

 

Глава 14 Рак

 

Существует давнее заблуждение загадочного происхождения, будто рак — тема, о которой биологи способны высказать много глубоких и важных для медицины мыслей. Можно лишь предполагать, что объясняется оно иллюзией, будто рак — это всего только клетки, которые ускользнули от общего контроля над ростом, осуществляемого организмом. На подобное заявление патолог, например, мог бы возразить так: рак — это вовсе не «только» что бы то ни было, а быстрый рост — вовсе не главная его особенность, во всяком случае, не то, чего следует бояться в нем больше всего. Некоторые другие черты, отличающие злокачественные образования, — это (а) их инвазивность, т. е. способность проникать в окружающие ткани, попадать в лимфатические сосуды, по которым происходит отток лимфы из органов и тканей, и размножаться, распространяясь по всему телу и образуя, вторичные центры роста, и (б), возможно, их способность обходить естественную иммунную защиту организма (об этом мы поговорим ниже).

Рак — общее название для большого числа различных новообразований, а потому говорить о причинах рака или о самом раке так, словно это одна болезнь, столь же бессмысленно, как если бы мы свалили в одну кучу туберкулез, воспаление легких и чуму под названием «бактерит», а потом жалобно спрашивали бы, каковы причины «бактерита» и как его лечить.

Виды рака. Злокачественное новообразование эпителиальных тканей (т. е. тех тканей, которые ограничивают поверхности организма), главным образом клеток кожи и слизистых оболочек, носит название карциномы. Злокачественные образования клеток {131} соединительной ткани, обычно разбросанных по всему организму, называются саркомой. Опухолевые заболевания клеток кроветворных органов объединены под названием лейкозов. Для дальнейшей дифференцировки новообразований в их название вводится наименование тканей, из которых они возникают; так, злокачественная опухоль кости — это остеосаркома, а опухоль лимфоидных клеток — лимфосаркома. Опухоль пигментных клеток кожи, известных как меланоциты, — это меланосаркома, а опухоль клеток опорной ткани (нейроглии) нервной системы — глиома. Очень часто суффикс «ома» используется и для обозначения доброкачественных новообразований: так, остеома может быть всего лишь костным наростом или выступом, а неврома — утолщением нерва, которое, возможно, возникло вследствие неправильного течения восстановительного процесса.

Причины рака. Превращение нормальной клетки в злокачественную может произойти под влиянием самых разных факторов. Среди них следует назвать рентгеновские лучи и другие ионизирующие излучения, а также целый набор углеводородов, многие из которых были первоначально извлечены из каменноугольной смолы или обнаружены в ней, например метилхолантрен, бензпирен и дибензантрен. Хорошо известно, что вирусы вызывают некоторые опухоли у цыплят (установлено П. Роусом), а также лейкемию у мышей, кошек и, возможно (хотя с полной убедительностью это еще не доказано), у человека. Один из наиболее интересных, хотя в определенном плане и наиболее озадачивающих способов вызвать у подопытных животных опухоль — это введение в подкожную клетчатку почти непроницаемой пластмассовой пленки. Если в пленке пробиты отверстия, никакого новообразования не возникает, так что ее действие нельзя приписать материалу самой пленки: скорее в этом повинны какие-то нарушения в движении клеток или жидкостей.

Лечение рака. Во всех случаях, когда это возможно, новообразования удаляются хирургическим путем — решающее значение при этом имеют раннее распознавание и возможность точно локализовать опухоль с помощью рентгена. Но для некоторых опухолей удаление, естественно, оказывается невозможным. {132} Таковы, в частности, лейкемия и те опухоли, развита которых зашло столь далеко, что вторичные новообразования (метастазы) уже укоренились по всему телу. Вместо хирургического вмешательства или в дополнение к нему новообразования лечатся одним из разнообразных антипролиферативных средств, т. е. средств, которые препятствуют делению клеток (к несчастью, не только клеток злокачественных опухолей, но и всех вообще делящихся клеток организма). Важнейшее антипролиферативное воздействие — это рентгеновское облучение или гамма-облучение, производимое, например, с помощью радиоактивного изотопа кобальта. Главное преимущество облучения заключается в том, что рентгенологи научились очень точно контролировать дозировку и в отличие от химических антипролиферативных средств его можно прекратить, как только оно, по мнению врача, выполнит свою задачу. Химические антипролиферативные средства совершенствуются год от года или, вернее, от месяца к месяцу. Среди них есть соединения, которые благодаря своему сходству с основными питательными веществами мешают их нормальному усвоению (например, антифолиевый метотрексат), соединения, схожие по структуре с важными составными частями нуклеиновой кислоты, синтез которой они поэтому нарушают (вещества этой последней категории включают меркаптопурин и азатиоприн). И те и другие действуют по принципу конкурентного торможения (см. гл. 11).

Другое направление атаки — через гормоны, поскольку некоторые опухоли образовываются клетками, развитие которых зависит от гормонов: опухоли такого рода часто удается держать под контролем, удаляя необходимые для их роста гормоны, а иногда замещая эти гормоны гормонами противоположного действия. Примером этого может служить лечение опухолей простаты, или предстательной железы (непарной железы мужской половой системы), путем введения, в частности, эстрогенного гормона — эстрадиола.

В последние годы с большими надеждами изучаются возможности совершенно иного способа лечения — иммунотерапии, опирающейся на наши знания о противоопухолевом иммунитете. {133}

Одним из самых ранних открытий при экспериментальном изучении опухолей (сделанным после повторных попыток, большинство из которых оканчивалось неудачей) был тот факт, что опухоли, возникающие у крыс и мышей, удается пересадить другим крысам и мышам соответственно. Лишь изредка небольшой кусочек пересаженной опухоли «принимался» и сразу же начинал расти; чаще опухоль начинала было расти, а затем мало-помалу исчезала, что сопровождалось свирепыми атаками лимфоцитов реципиента — тех самых клеток, которые играют решающую роль в иммунной защите организма. Мышь или крыса, в организме которой опухоль сначала росла, а потом сходила на нет, при дальнейших попытках привить ей ту же опухоль оказывалась совершенно к ней невосприимчивой. Такое же состояние невосприимчивости достигается иногда с помощью простой прививки предполагаемому реципиенту смеси нормальных клеток различных тканей, особенно зародышевых клеток. Подобные явления укрепляли у первых исследователей, пересаживающих опухоли, надежду на то, что регрессия опухоли — это и в самом деле излечение организма, а прививка предполагаемому реципиенту клеток опухоли или нормальных зародышевых клеток — реальная профилактическая мера. Вероятно, первым разбил эту иллюзию Пейтон Роус (1879–1970), крупнейший американский патолог-экспериментатор. Он задал вопрос: какие существуют доказательства, что подобный «иммунитет», о котором так широко говорят, — это иммунитет, направленный против опухоли как таковой, а не против пересаженной частицы опухоли, воспринимаемой как генетически чужеродная ткань; короче говоря, не сходен ли этот иммунитет с тем иммунитетом, который направлен против чужих трансплантатов вообще (см. гл. 13)?

Опасения Пейтона Роуса оказались вполне обоснованными, и в этом нет ничего удивительного: в дни первых пересадок опухолей инбредные линии мышей еще не были выведены и мыши, использовавшиеся только в экспериментах («серые» и «белые»), представляли собой полную смесь, а их единственный отличительный признак — цвет — был совершенно поверхностным. Хуже того: ученых, первыми занявшихся {134} пересадками опухолей, отвлекали всякие не относящиеся к делу моменты, вроде якобы имеющих место сезонных колебаний в темпе роста опухоли. И, сами того не замечая, они изучали не опухоли, а процесс пересадки — область, в которую они действительно внесли немало ценного, особенно в отношении генетики пересадок.

Новая эра началась в 30-х годах нашего века, когда несколько американских исследователей рака открыли подлинный противоопухолевый иммунитет, т. е. иммунитет, направленный против злокачественных клеток как таковых. Им удалось обнаружить, что у мыши иногда развивается иммунитет, направленный непосредственно против аутохтонной опухоли, т. е. против новообразования, которое возникло в самом организме. Никакое открытие подобного рода не было возможно до выведения строго инбредных линий мышей, т. е. таких мышей, которые, за исключением пола, сходны друг с другом столь же полно, как однояйцевые близнецы. Открытие иммунитета против аутохтонных новообразований породило большие надежды, и некоторые из этих надежд уже начинают оправдываться. Противоопухолевый иммунитет принадлежит к тому же общему типу, что и трансплантационный иммунитет — т. е. тот, который вызывает процесс, ведущий к отторжению пересаженного органа (см. гл. 13). Однако антигены новообразования далеко не так просто определяются и выделяются с помощью иммунологических методов, и тучей, омрачающей горизонт, остается тот факт, что до сих пор ни разу не было приведено ни одного окончательного доказательства иммунной реакции на человеческие новообразования вообще. Тем не менее косвенные свидетельства в пользу существования у человека противоопухолевого иммунитета выглядят настолько вескими, что патологи в большинстве условно приняли эту идею, а потому полезно будет сейчас рассмотреть вытекающие из всего этого практические выводы.

1. Регрессию опухоли следует признать не чрезвычайной редкостью, существование которой допускается лишь с трудом, но совершенно обычным явлением. То есть в действительности возникает очень много опухолей, которые в {135} клиническом смысле так и не обнаруживаются, — опухолей, выслеженных циркулирующими лимфоцитами, пробудивших иммунную реакцию и погибших от нее.

2. Имеет смысл убирать значительную часть онухоли или хотя бы как можно больше опухолевой ткани, даже если совершенно ясно, что всю опухоль убрать невозможно. Польза здесь заключается в том, что убирается нагрузка, возлагаемая на иммунную защиту человека постоянно поступающим из опухоли антигенным веществом, — этот процесс вполне может затормозить иммунную реакцию.

3. Центр тяжести клинических исследований рака следует перенести с эмпирических испытаний антипролиферативных средств на изучение вопроса, почему иммунные процессы, которым полагалось бы возникнуть, не возникают, и как их можно активизировать.

4. Химиотерапевтические противораковые средства, которые одновремеино являются и иммунодепрессивными средствами (а таких среди них большинство), следует использовать с крайней осторожностью; далее, отнюдь не следует считать само собой разумеющимся, что при удалении местной опухоли необходимо производить радикальное удаление всех местных лимфатических узлов (см. гл. 16). Собственно говоря, нет никаких убедительных свидетельств того, например, что при удалении новообразования грудной железы полное удаление всех местных лимфатических узлов — такая уж благотворная процедура.

Ранняя диагностика рака: эмбриональные антигены. Все клиническое лечение рака преобразилось бы, если бы только удалось найти способ обнаруживать ранние признаки появления в организме злокачественной опухоли — особенно опухоли внутренних органов. На решение этой проблемы направлена значительная часть всех онкологических исследований. Один из разрабатываемых путей строится на опознании в жидкостях тела ничтожных количеств зародышевых веществ. {136}

Рациональное зерно такого на первый взгляд неожиданного подхода заключается в том, что эмбриональные вещества, временно возникающие в процессе развития, иногда вновь начинают вырабатываться злокачественными клетками — так, словно при злокачественном перерождении гены, действовавшие в эмбриональный период и при обычных условиях затем отключающиеся, в опухолях каким-то образом вновь пробуждаются или «дерепрессируются». Явление это не следует считать подтверждением устарелой теории, будто злокачественная опухоль — это «остаток зародыша»: в ней предполагалось, что опухоли возникают из эмбриональных клеток, каким-то образом оставшихся в стороне от процесса развития и начавших бурно развиваться на более позднем этапе. Эта теория не выдержала тщательной проверки, и теперь ее никто не придерживается.

Иммунный надзор. Телеология отторжения пересаженной ткани все еще остается непонятной, однако многие удовлетворяются тем, что считают его ценой, которую мы платим за обладание иммунной системой, которая способна с чрезвычайной тонкостью отличать свое от не своего.

Совершенно новый подход к этой проблеме возник из рассуждений Льюиса Томаса и Макфарлейпа Бернета: отторжение пересаженной ткани — это неприятный побочный результат существования в организме контрольной системы, очень точно настроенной на то, чтобы выявлять и уничтожать ненормальные варианты клеток тела. Незачем говорить, что иммунологическая теория противоопухолевой защиты придала идее существования иммунного надзора чрезвычайную важность.

К сожалению, все это не так просто: мыши-мутанты, известные под названием «голые», у которых клеточный иммунитет ослаблен настолько, что у них приживаются даже ткани, пересаженные от человека, далеко не так восприимчивы к новообразованиям, как следовало бы ожидать, исходя из теории иммунного надзора. То же относится и к мышам, у которых вскоре после рождения была удалена вилочковая железа, так что они едва ли были способны на клеточную иммунную реакцию. Однако предположение, что в противоопухолевом иммунитете и, вероятно, {137} в идее иммунного надзора что-то есть, поддерживается тем фактом, что мыши, у которых иммунные способности удалось развить гораздо выше среднего уровня (это было показано проведением независимых экспериментов), гораздо более устойчивы к росту аутохтонных опухолей, чем обычные мыши.

Бурный приток новых идей в области противоопухолевого иммунитета — это постоянный укор всем тем администраторам, которые утверждают, будто онкологические исследования нуждаются не столько в финансировании, сколько в идеях. Современные исследования рака, как и собственно иммунология, привлекают многих блестящих молодых ученых, чрезвычайно богатых идеями, но далеко не все из этих идей удается проверить — главным образом из-за недостатка фондов. Однако следует ясно понять, что панацея от рака никогда найдена не будет. Гораздо более вероятно, что каждая опухоль у каждого пациента представляет собой индивидуальную проблему, для которой лабораторные исследователи и клиницисты должны совместно находить индивидуальное решение.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: