Сплошной (непрерывный) спектр

Спектроскопические методы анализа. Практическое изучение фотографирования спектров.

Качественный спектральный анализ.

Основой качественного спектрального анализа является свойство атомов каждого химического элемента излучать характерный линейчатый спектр. Задача качественного спектрального анализа сводится к отысканию линий определяемого элемента в спектре пробы. Однако общее число линий в спектре многих элементов очень велико и достигает нескольких сотен и тысяч (например, у урана известно свыше 5000 линий). Нет необходимости определять длины волн всех спектральных линий в спектре пробы. Для целей качественного анализа необходимо установить наличие или отсутствие в спектре так называемых аналитических или последних линий.

При уменьшении содержания элемента в пробе интенсивность линий этого элемента в спектре пробы будет уменьшаться, некоторые линии исчезнут, и число линий уменьшится. При какой-то очень малой концентрации останется всего несколько линий, которые исчезают последними. Это и есть последние линии, по которым обычно проводится качественный анализ. Последние линии хорошо изучены, их длины волн и интенсивности можно найти в специальных таблицах и атласах спектральных линий. В таблицах их часто отмечают индексами U1, 2 и т. д., или V1, V2 и т. д. Индекс U1 показывает, что при возбуждении спектра в дуге эта линия исчезает последней, линия с индексом U2 исчезает предпоследней и т. д. Индексы V1, V2 относятся к этой же последовательности исчезновения линий в искровом спектре.

Расшифровывают спектры и определяют длину волны спектральных линий с помощью спектров сравнения, чаще всего спектра железа, имеющего характерные группы линий в различных областях длин волн. Спектр анализируемого вещества обычно фотографируют встык со спектром железа.

При проведении качественного спектрального анализа часто пользуются специальными планшетами, на которых нанесены участки спектра железа и аналитические линии элементов с указанием длин волн. Совмещая изображение спектра пробы, полученное с помощью спектропроектора, с линиями планшета, можно быстро получить предварительную информацию о качественном составе образца. Однако определение длины волны или совмещения на планшете еще недостаточно, чтобы сделать однозначный вывод о принадлежности данной линии какому-либо элементу – необходимо дополнительное исследование по идентификации спектральной линии.

 

Если отсутствие последней линии определяемого элемента в спектре гарантирует отсутствие других линий этого элемента, то наличие линии с длиной волны, характерной для последней линии какого-либо элемента, еще не означает, что линия действительно принадлежит именно этому элементу. Основной причиной ошибок является так называемое наложение спектральных линий, связанное с недостаточной дисперсией спектральных приборов. Таблицы спектральных линий показывают, что длина волны последней линии почти любого элемента в пределах ±0.5 Ǻ совпадает с длинами волн линий многих других элементов. При расшифровке часть спектров почти всегда можно исключить, основываясь на данных о происхождении пробы или имея в виду интенсивность линии и условия возбуждения. Однако и после этого нередко остается несколько элементов, которым эту линию можно приписать. Окончательную идентификацию производят, проверяя последние линии всех «подозреваемых» элементов. Если, например, линия может принадлежать Cu или Cr, а последней линии Cr в пробе нет, то ясно, что анализируемая линия принадлежит не Cr. Для получения надежного результата необходим контроль по нескольким линиям.

Спектральным анализом качественно можно определить более 80 элементов. Предел обнаружения качественного спектрального анализа колеблется для разных элементов в очень широких пределах – от 10-2 (Hg, Os, U и др.) до 10-5 % (Na, B, Bi и др.). Следует отметить, что отсутствие линии какого-либо элемента в спектре означает лишь, что его концентрация в пробе меньше чувствительности данной спектральной линии, или, как говорят, меньше его предела обнаружения. В связи с большой чувствительностью спектрального анализа нередко переоткрывают те или иные элементы, попавшие в пробу в результате случайных загрязнений.

При фотографировании спектра пробы следует помнить о последовательности поступления элементов в плазму дуги. Чтобы не упустить испарение труднолетучих элементов, а также для разделения линий легко- и труднолетучих элементов спектр фотографируют несколько раз (передвигая пластинку) до полного испарения пробы.

Виды спектров.

Спектральный состав излучения атомов различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа.

Сплошной (непрерывный) спектр.

Накаленные твердые и жидкие тела и газы (при большом давлении) испускают свет, разложение которого дает сплошной спектр, в котором спектральные цвета непрерывно переходят один в другой. Характер непрерывного спектра и сам факт его существования опре­деляются не только свойствами отдельных излучающих атомов, но и вза­имодействием атомов друг с другом. Сплошные спектры одинаковы для разных веществ, и поэтому их нельзя использовать для определения состава вещества.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: