Тепловые двигатели и охрана окружающей среды

1. Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу.

- Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

- Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Большая часть двигателей, используемых людьми, - это тепловые двигатели.

История тепловых машин уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи. Как же стреляла эта пушка? Один конец ствола сильно нагревали на огне. Затем в нагретую часть ствола наливали воду. Вода мгновенно испарялась и превращалась в пар. Пар, расширяясь, с силой и грохотом выбрасывал ядро. Для нас интересно здесь то, что ствол пушки представлял собой цилиндр, по которому как поршень скользило ядро.

Сегодня один из самых распространенных тепловых двигателей является двигатель внутреннего сгорания (ДВС). Принцип действия заключается в том, что энергия топлива переходит во внутреннюю энергию пара, а газ (пар), расширяясь, совершает работу. Так внутренняя энергия газа (пара) превращается в кинетическую энергию поршня.

Устройства, превращающие энергию топлива в механическую энергию, называются тепловыми двигателями.

Про тепловые двигатели вы уже говорили в 8 классе.

 

2. Рассмотрим устройство и принцип работы теплового двигателя. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Тепловая машина работает циклично. Газ, которому передается энергия, нагрет до высокой температуры и соответственно внутренняя энергия такого газа достаточно большая. Расширяясь, газ совершает работу, соответственно охлаждается, его внутренняя энергия уменьшается и совершается полезная работа. В дальнейшем, чтобы все повторилось нам надо перевести наш тепловой двигатель в первоначальное состояние, таким образом, чтобы работа вновь повторилась. Для этого нам необходимо газ охлаждать. Для рассмотрения всех процессов, происходящих в ТД, удобно рассматривать газ, находящийся в цилиндре под поршнем. В этом случае мы говорим, что газ совершает работу по перемещению поршня. Работа этого поршня и будет считаться полезной.

Однозначно классифицировать ТД нельзя. Существует много признаков, по которым различают тепловые двигатели: по назначению двигателей, по роду используемого топлива, по способу преобразования тепловой энергии в механическую, по способу регулирования в связи с изменением нагрузки и т.д.

Основная классификация тепловых двигателей по способу подвода теплоты к рабочему телу:

1. Двигатели внутреннего сгорания
2. Двигатели внешнего сгорания

Двигатели внутреннего сгорания. В этих двигателях основные процессы — сжигание топлива и выделение теплоты с преобразованием в механическую работу — происходят непосредственно внутри двигателя.

Двигатели внешнего сгорания – класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела. Это, например, паровая турбина, газовая турбина, паровая машина.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника.

 

Первая часть - нагреватель. Нагревателем в ТД является процесс сгорания топлива. Именно в этот процесс включается образование газа. Нагреватель характеризуется температурой нагревателя Тн, т.е. температура того, газа, который образовался. И конечно количеством теплоты, который передается этому газу.

Газ, образовавшийся в результате, того что сгорело топливо, называется рабочим телом. Рабочее тело и совершает работу. И оставшееся, некоторое количество теплоты будет передано холодильнику.

Холодильником, как правило, является окружающая среда. Именно температура холодильника в данном случае нам говорит о том, до какой температура мы должны понизить температуру рабочего тела, чтобы перевести машину в первоначальное состояние.

Работу, которое совершает рабочее тело, газ при расширении, мы определяем следующим образом: A=| Q 1|– |Q 2|. Важное значение имеет цикличность работы. Работа двигателя будет оправдана в том случае, если работа по сжатию газа будет меньше, чем работа, произведенная самим газом. В этом случае работа газа совершается при расширении, т.е. тогда, когда давление газа будет больше атмосферного. А в случае охлаждения газа, сжатие газа будет производиться внешними силами, тогда работа газа будет считаться отрицательной.

3. КПД тепловых двигателей

КПД теплового двигателя – важнейшая его характеристика. ТД подчиняется первому закону термодинамики и конечно же второму закону термодинамики (передача тепла происходит от более нагретого тела к менее нагретому).

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя. КПД выражают в процентах. ç = ·100% ç = ·100%

Qн теплота, полученная от нагревателя, Дж Qх - теплота, отданная холодильнику, Дж

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

В 19 веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ для определения (через термодинамическую температуру):

η = ·100% Тн – термодинамическая температура нагревателя, К

Тх - термодинамическая температура холодильника, К.

И этот коэффициент полезного действия получил название максимального

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Тн, и холодильником с температурой Тх, не может иметь КПД, превышающий КПД идеальной тепловой машины. Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

4. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока.

Тепловые двигатели- паровые турбины- устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном- поршневые двигатели внутреннего сгорания; на водном- ДВС и паровые турбины; на ж/д- тепловозы с дизельными установками; в авиации- поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД: Паровой двигатель – 8%; Паровая турбина – 40%; Газовая турбина – 25-30%;

Двигатель внутреннего сгорания – 18-24%; Дизельный двигатель – 40– 44%; Реактивный двигатель – 25%

5. Тепловые двигатели и охрана окружающей среды Непрерывное развитие энергетики, автомобильного и других видов транспорта, возрастание потребления угля, нефти, газа в промышленности и на бытовые нужды увеличивают возможности удовлетворения жизненных потребностей человека.Однако в настоящее время количество ежегодно сжигаемого в различных тепловых двигателях химического топлива настолько велико, что все более сложной проблемой становится охрана природы от вредного влияния продуктов сгорания. Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов:

1. При сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.

2. Сжигание топлива сопровождается выделением в атмосферу углекислого газа. Дальнейшее существенное увеличение концентрации СО2 в атмосфере может привести к повышению ее температуры («парниковый эффект»).

3. при сжигании угля и нефти атмосфера загрязняется азотными и серными

соединениями, вредными для растений, животных и для здоровья человека.

4. Актуальна проблема захоронения радиоактивных отходов атомных станций.

5. Применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара (35% водоснабжения всех отраслей хозяйства).

Для охраны окружающей среды необходимо обеспечить:

1. эффективную очистку выбрасываемых в атмосферу отработанных газов;

2. использование качественного топлива, создание условий для более полного его сгорания;

3. повышение КПД тепловых двигателей за счет уменьшения потерь на трение и полного сгорания топлива и др.

Перспективно использование водорода в качестве горючего для тепловых двигателей: при сгорании водорода образуется вода. Идут интенсивные исследования по созданию электромобилей, способных заменить автомобили с двигателем, работающим на бензине.

Приложение 3


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: