Хромистые нержавеющие стали

Хром — основной легирующий элемент, делающий сталь коррозионностойкой в окислительных средах. Коррозионная стойкость хромистых нержавеющих ста­лей объясняется образованием на поверхности защитной плотной пассивной пленки окисла Сr2O3. Такая пленка образуется только при содержании хрома более 12,5% (ат.). Именно при таком содержании хрома (n=1) потенциал скачком изменяется от —0,6 до +0,2 В.

Железо с хромом образуют непрерывный ряд твер­дых растворов (Cм. диаграмму железо – хром). Благодаря этому можно получить сталь с высоким содержанием хрома в твердом растворе. Хром не является дефицитным металлом, стоимость его сравнительно невысока, поэтому хроми­стые стали — самые дешевые нержавеющие стали. Эти стали обладают достаточно хорошим комплексом техно­логических свойств. Углерод в нержавеющих сталях, в том числе и в хромистых, является ρ нежелательным элементом, так как, связывая хром в карбиды, он тем самым обедняет твердый раствор хромом, понижая коррозионные свойства стали. Кроме того, углерод рас­ширяет область γ-твердого раствора, способствуя полу­чению двухфазного состояния (рис. 1).

Рис. 1. Влияние углерода на положение области γ - твердого раствора на диа­грамме железо — хром

При более высоком содержании хрома в стали будет присут­ствовать σ-фаза. Чем больше содержание хрома, тем выше коррозионная стойкость хромистых сталей. В настоящее время хромистые стали выплавляют трех типов: 1) содержащие 13% Сr; 2) 17% Сr- 3) 25—28% Сr.

Стали 08X13 и 12X13 обладают по­вышенной пластичностью и их исполь­зуют для изготовления деталей, подвер­гающихся ударным нагрузкам (турбин­ные лопатки, арматура крекинг-устано­вок, предметы домашнего обихода и т. д.).

Из сталей 30X13 и 40X13, приобре­тающих после термической обработки структуру мартенсита, делают измери­тельный и медицинский инструменты, пружины и другие коррозионностойкне детали, от которых требуется высокая твердость или прочность.

Стали, содержащие 17 и 25—28% Сr относятся к сталям ферритного класса. Они имеют более высокую коррозион­ную стойкость по сравнению со сталя­ми типа Х13. При нагреве выше 850° С ферритные стали проявляют склонность к росту зерна, их пластичность понижается. Для полу­чения однофазной структуры, уменьшения склонности к росту зер­на и к МКК в эти стали добавляют титан и ниобий (08X17Т, 15Х25Т). Прочность повышается, пластичность сохраняется доста­точной, улучшаются свойства сварных швов. Эти стали применяют для изготовления аппаратуры, работающей в таких агрессивных средах, как дымящаяся азотная кислота, фосфорная кислота, де­лают коррозионностойкой аппаратуру химической и пищевой про­мышленности. Из стали 12X17 изготавливают теплообменники для горячих нитрозных газов, трубопроводы и баки для кислот и т. д.

Введение молибдена (12Х17М2Т) делает сталь стойкой даже в органических кислотах (уксусной, муравьиной). Стали ферритного класса не восприимчивы к коррозии под напряжением.

Для изготовления шарикоподшипников, работающих в агрессив­ных средах, используют сталь 95X18 (0,9—1,0% С, 17—19% Сr).

Все хромистые стали подвергают закалке с 1000— 1100° С с последующим отпуском (для сталей феррит­ного класса —при 700—750° С, мартенситного класса 200—250° С).

Стали ферритного класса при нагреве не испытывают превращений, поэтому термическую обработку проводят для получения структуры более однородного твердого раствора, что увеличивает коррозионную стойкость.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: