Измерение расстояния до Луны

Устройство лазера

Толкуи от самого физического понятия о лазере было бы немного,если бы немного если бы его не умели создавать.Основой устройства служит оптический генератор,который,используя электрическую,химическую,тепловую или какую-нибудь другую энергию,производит лазерный луч

Лазеры как правило состоят из трех частей:

Источник энергии или механизм накачки                                                              5

Рабочее тело

Система зеркал или оптический резонатор.

 

 

Источник энергии-подает необходимую для работы устройства энергию.Для лазеров применяются различные виды энергии,зависящие от того.что именно используется в качестве рабочего тела.

Рабочее тело -это наиболее важная составляющая лазера.Оно как раз и является телом,в котором находятся атомы,излучающие когерентные фотоны.Именно рабочее тело определяет наиболее важные характеристики лазера,такие как мощность,диапазон и т.п.В качестве рабочего тела могут использоваться твердые в-ва,газы,жидкости,плазма.

Оптический резонатор- это обыкновенная система зеркал,расположенных вокруг рабочего тела,ведь оно излучает свет во всех направлениях,а нам нужно собрать все в один луч.Для этой цели он и нужен.

 

Лазер в Медецине

ЛЕЧЕНИЕ КОЖИ И ГЛАЗ

 

Лечение кожи и глаз Применение лазеров в медицине началось с офтальмологии и дерматологии. Квантовый генератор был открыт в 1960 году. И уже через год после этого Леон Голдман продемонстрировал, как рубиновый красный лазер в медицине может быть использован для удаления капиллярной дисплазии, разновидности родимых пятен, и меланомы. Такое применение основано на способности источников когерентного излучения работать на определенной длине волны. Источники когерентного излучения в настоящее время широко используются для удаления опухолей, татуировок, волос и родинок.                                                                                                              6

В дерматологии применяются лазеры различных типов и длин волн, что обусловлено разными видами излечиваемых поражений и основного поглощающего вещества внутри них. Длина волны также зависит от типа кожи пациента. Сегодня нельзя практиковать дерматологию или офтальмологию, не имея лазеров, так как они стали основными инструментами лечения пациентов. Применение квантовых генераторов для коррекции зрения и широкого спектра офтальмологических приложений выросло после того, как Чарльз Кэмпбелл в 1961 году стал первым врачом, использовавшим красный лазер в медицине для исцеления пациента с отслоением сетчатки. Позже для этой цели офтальмологи стали применять аргоновые источники когерентного излучения в зеленой части спектра. Здесь были задействованы свойства самого глаза, особенно его линзы, фокусировать луч в области отслоения сетчатки. Высококонцентрированная мощность аппарата ее буквально приваривает. Больным с некоторыми формами макулодистрофии может помочь лазерная хирургия – лазерная коагуляция и фотодинамическая терапия. В первой процедуре луч когерентного излучения используется для герметизации кровеносных сосудов и замедления их патологического роста под макулой. Подобные исследования были проведены в 1940 годах с солнечным светом, но для их успешного завершения врачам были необходимы уникальные свойства квантовых генераторов. Следующим применением аргонового лазера стала остановка внутренних кровотечений. Селективное поглощение зеленого света гемоглобином - пигментом красных кровяных клеток - использовалось для блокирования кровоточащих кровеносных сосудов. Для лечения рака разрушают кровеносные сосуды, входящих в опухоль и снабжающие ее питательными веществами.

 

ВИЗУАЛИЗАЦИЯ И ДИАГНОСТИКА

 

Визуализация и диагностика Лазеры в медицине играют важную роль в раннем выявлении рака, а также многих других заболеваний. Например, в Тель-Авиве группа ученых заинтересовалась ИК-спектроскопией с использованием инфракрасных источников когерентного излучения. Причиной этого является то, что рак и здоровая ткань могут иметь различную проходимость в инфракрасном диапазоне. Одним из перспективных применений этого метода является выявление меланом. При раке кожи ранняя диагностика очень важна для выживаемости пациентов. В настоящее время обнаружение меланомы делается на глаз, поэтому остается полагаться на мастерство врача. В Израиле раз в год каждый человек может пойти на бесплатный скрининг меланомы. Несколько лет назад в одном из крупных медицинских центров проводились исследования, в результате которых появилась возможность наглядно наблюдать разницу в ИК-диапазоне разницу между потенциальными, но неопасными признаками, и настоящей меланомой. Кацир, организатор первой конференции SPIE по биомедицинской оптике в 1984 году, и его группа в Тель-Авиве также разработали оптические волокна, прозрачные для инфракрасных длин волн, что позволило распространить этот метод на внутреннюю диагностику. Кроме того, это может стать быстрой и безболезненной альтернативой цервикальному мазку в гинекологии.                                       7

        ОКТ ДЛЯ ГЛАЗ И НЕ ТОЛЬКО                                                                                                ОКТ для глаз и не только Лазеры в биологии и медицине нашли применение в оптической когерентной томографии (ОКТ), что вызвало волну энтузиазма. Этот метод визуализации использует свойства квантового генератора и может дать очень четкие (порядка микрона), поперечные и трехмерные изображения биологической ткани в режиме реального времени. ОКТ уже применяется в офтальмологии, и может, например, позволить офтальмологу увидеть поперечное сечение роговицы для диагностики заболеваний сетчатки и глаукомы. Сегодня техника начинает использоваться также и в других областях медицины. Одна из крупнейших областей, формирующихся благодаря ОКТ, занимается получением волоконно-оптических изображений артерий. Оптическая когерентная томография может быть применена для оценки состояния склонной к разрыву нестабильной бляшки.                                

 

 

ФТД И ДРУГИЕ МЕТОДЫ ЛЕЧЕНИЯ

. Разработки в области оптических волокон помогают расширить возможности применения лазеров и в других сферах. Кроме того, что они позволяют проводить диагностику внутри организма, энергия когерентного излучения может быть передана туда, где в этом есть необходимость. Это может быть использовано в лечении. Волоконные лазеры становятся гораздо более продвинутыми. Они кардинально изменят медицину будущего. Область фотомедицины, использующая светочувствительные химические вещества, которые взаимодействуют с телом особым образом, может прибегнуть к помощи квантовых генераторов как для диагностики, так и для лечения пациентов. В фотодинамической терапии (ФДТ), например, лазер и фоточувствительное лекарственное средство может восстановить зрение у больных с «влажной» формой возрастной макулярной дегенерации, основной причиной слепоты у людей в возрасте старше 50 лет. В онкологии некоторые порфирины накапливаются в раковых клетках и флуоресцируют при освещении определенной длиной волны, указывая на место расположения опухоли. Если эти же самые соединения затем осветить другой длиной волны, они становятся токсичными и убивают поврежденные клетки. Красный газовый гелий-неоновый лазер в медицине применяется в лечении остеопороза, псориаза, трофических язв и др., так как данная частота хорошо поглощается гемоглобином и ферментами. Излучение замедляет воспалительные процессы, предотвращает гиперемию и отеки, улучшает кровоснабжение.

                                                                                                                                                               8

 

 

ЛАЗЕРНОЕ ОРУЖИЕ

Лазерное оружие всегда вызывает множество споров. Одни считают его оружием будущего, другие категорически отрицают вероятность появления эффективных образцов такого оружия в ближайшем будущем. Люди задумывались о лазерном оружии даже до его фактического появления, вспомним классическое произведение «Гиперболоид инженера Гарина» Алексея Толстого (безусловно, в произведении указан не совсем лазер, но близкое к нему по действию и последствиям применения оружие).

 


Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?

Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.

 

                                                                                                                    9

 

Схема первого лазера на искусственном рубине

 

 

Самодельный лазер на искусственном рубине с энергией импульса 5 Дж и простреленная семью импульсами этого лазера монета, лазер построен им планируется создание аналогичного лазера с энергией импульса до 100 Дж                                                                                                    10

 

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях.

 

 

                                                                                                                                                                                                                     11

 

 

ЛАЗЕР В ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЯХ

С появлением полупроводниковых лазеров появилась возможность использования их для записи и чтения информации на информационных носителях – лазерных компакт-дисках, как средствах записи и обработки больших объёмов информации. В чем же состоит главное преимущество лазерного компакт-диска?

Прежде всего, это необычайно высокое качество звучания при воспроизведении лазерных фонограмм. Поскольку при проигрывании компакт-дисков считывающим устройством является лазерный луч, а следовательно, между ним и диском нет механического контакта, то полностью отсутствуют посторонние шумы, шуршанье и треск свойственные обычным грампластинкам.

 

Лазерный диск представляет собой круглую пластинку, изготовленную из алюминия, покрытую прозрачным пластмассовым защитным слоем. Сначала изготавливается так называемый мастер-диск, на который с помощью луча лазера наносится информация в двоичном представлении. Лазерный импульс возникает только тогда, когда через записывающее устройство проходит логическая единица. В момент прохождения логического нуля импульс не возникает. В результате в некоторых местах поверхности диска, которые теперь соответствуют логическим единицам в массиве информации, алюминий испаряется.

Мастер-диск служит матрицей, с которой печатаются многочисленные копии, причём на копии в тех местах, где на мастер-диске были светоотражающие участки, возникают выемки, рассеивающие свет, а в тех местах, где на мастер-диске были выемки, на копии остаются светоотражающие островки. Благодаря тому, что выжигание питов (выемок) на поверхности диска производится при 12 помощи лазера, можно достичь очень большой плотности записи информации, так как диаметр лазерного луча, а, следовательно, и пита очень мал.

 

ОПТИЧЕСКАЯ СВЯЗЬ

Волоконно-оптическая связь -- вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем -- волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования, пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования -- незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.

В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления. Оптическое волокно состоит из двух элементов -- сердцевины, являющейся непосредственным световодом, и оболочки. Показатель преломления сердцевины несколько больше показателя преломления оболочки, благодаря чему луч света, испытывая многократные переотражения на границе сердцевина-оболочка, распространяется в сердцевине, не покидая её.

Волоконно-оптическая связь находит всё более широкое применение во всех областях -- от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа -- Япония, большая часть которой проходит по территории России. Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами.

Волокно в каждый дом (англ. Fiber to the premises, FTTP или Fiber to the home,FTTH) - термин, используемый телекоммуникационными провайдерами, для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении волоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг, включающего:высокскоростной доступ в интернет,услуги телефонной связи,спутниковое телевидение.

 

                                                                                                                                13

 

 

ЛАЗЕР В АСТРОНОМИИ

В настоящее время лазер еще ждет своих "нерешенных проблем" в области астрономии и космонавтики. Хотя и здесь он широко используется для решения повседневных задач, таких как высокоточное измерение расстояний, в качестве инструмента для наведения различного рода телескопов на цели, инструмента определения угловых скоростей для определения скорости вращения планет, и т.п.

Например, вот как с использованием лазера было измерено расстояние до Луны точностью до нескольких сантиметров.


Измерение расстояния до Луны

Во время полётов на Луну пилотируемыми и беспилотными аппаратами, на её поверхность было доставлено несколько специальных уголковых отражателей. Затем, с Земли посылали специально сфокусированный лазерный луч. После этого, с помощью специальных устройств, фиксировали возвращения луча, отраженного от отражателей на поверхности Луны.

Теперь зная время, которое лазерный луч затратил на путь до лунной поверхности, и обратно и основываясь на значении скорости света (которое, кстати, специально для этих исследований пришлось отдельно измерять с большой точностью), стало возможным рассчитать расстояние до Луны. Сегодня, благодаря этому, параметры орбиты Луны известны с точностью до нескольких сантиметров.

Лазерные дальномеры

Для измерения расстояний используется лазерный дальномер. Стоит упомянуть, что используется он не только в астрономической науке, но и во многих других областях. Например, в навигации, инженерной геодезии, военном деле, при топографической съёмке. Существуют импульсные и фазовые дальномеры. Импульсный дальномер состоит из импульсного лазера и дальномера. Измеряя время, которое затрачивает луч на путь до отражателя и обратно и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом. Фазовый же дальномер - дальномер, основанный на сравнении фаз отправленного и отраженного сигнала. Фазовые дальномеры обладают более высокой точностью измерения по сравнению с импульсными дальномерами


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: