Условия жизни в космосе

В космосе мы встречаем широкий спектр физических условий: температура вещества меняется от 3-5 К до 107-108 К, а плотность - от 10-22 до 1018 кг/см. Среди столь большого разнообразия нередко удаётся обнаружить места (например, межзвёздные облака), где один из физических параметров с точки зрения земной биологии благоприятствует развитию жизни. Но лишь на планетах могут совпасть все параметры, необходимые для жизни.

Планеты должны быть не меньше Марса, чтобы удержать у своей поверхности воздух и пары воды, но и не такими огромными, как Юпитер и Сатурн, протяжённая атмосфера которых не пропускает солнечные лучи к поверхности. Одним словом, планеты типа Земли, Венеры, возможно, Нептуна и Урана при благоприятных обстоятельствах могут стать колыбелью жизни. А обстоятельства эти довольно очевидны: стабильное излучение звезды; определённое расстояние от планеты до светила, обеспечивающее комфортную для жизни температуру; круговая форма орбиты планеты, возможная лишь в окрестностях уединённой звезды (т. е. одиночной или компонента очень широкой двойной системы). Это главное. Часто ли в космосе встречается совокупность подобных условий?

Одиночных звёзд довольно много -- около половины звёзд Галактики. Из них около 10% сходны с Солнцем по температуре и светимости. Правда, далеко не все они также спокойны, как наша звезда, но приблизительно каждая десятая похожа на Солнце и в этом отношении. Наблюдения последних лет показали, что планетные системы, вероятно, формируются у значительной части звёзд умеренной массы. Таким образом, Солнце с его планетной системой должны напоминать около 1% звёзд Галактики, что не так уж мало -- миллиарды звёзд.

В конце 50-х гг. XX столетия американские биофизики Стэнли Миллер, Хуан Оро, Лесли Оргел в лабораторных условиях имитировали первичную атмосферу планет (водород, метан, аммиак, сероводород, вода). Колбы с газовой смесью они освещали ультрафиолетовыми лучами и возбуждали искровыми разрядами (на молодых планетах активная вулканическая деятельность должна сопровождаться сильными грозами). В результате из простейших веществ очень быстро формировались любопытные соединения, например, 12 из 20 аминокислот, образующих все белки земных организмов, и 4 из 5 оснований, образующих молекулы РНК и ДНК. Разумеется, это лишь самые элементарные «кирпичики», из которых по очень сложным правилам построены земные организмы. До сих пор непонятно, как эти правила были выработаны и закреплены природой в молекулах РНК и ДНК.

Биологи не видят иной основы для жизни, кроме органических молекул -- биополимеров. Если для некоторых из них, например, молекулы ДНК, важнейшей является последовательность звеньев-мономеров, то для большинства других молекул - белков и в особенности ферментов - важнейшей является их пространственная форма, которая очень чувствительна к окружающей температуре. Стоит повыситься температуре, как белок денатурируется - теряет свою пространственную конфигурацию, а вместе с ней и биологические свойства. У земных организмов это происходит при температуре около 60 С. При 100--120 С разрушаются практически все земные формы жизни. К тому же универсальный растворитель -- вода -- при таких условиях превращается в атмосфере Земли в пар, а при температуре менее 0 С - в лёд. Следовательно, можно считать, что благоприятный для возникновения диапазон температур - 0-100 С.

Температура на поверхности планеты в основном зависит от светимости родительской звезды и расстояния до неё. В конце 50-х гг. американский астрофизик, китаец по рождению, Су-Шу Хуанг исследовал эту проблему детально: он рассчитал. На каком расстоянии от звёзд разного типа могут находиться обитаемые планеты, если средняя температура на их поверхности лежит в пределах 0--100 С. Ясно, что вокруг любой звезды существует определённая область -- зона жизни, за границы которой орбиты этих планет не должны выходить. У звёзд-карликов она близка к звезде и неширока. При случайном формировании планет вероятность, что какая-нибудь из них попадёт в эту область, мала. У звёзд высокой светимости зона жизни находится далеко от звезды и очень обширна. Это хорошо, но продолжительность их жизни так мала, что трудно ожидать появления на их планетах разумных веществ (земной биосфере для этого понадобилось более 2 млрд. лет).

Таким образом, по мнению Су-Шу Хуанга, для обитаемых планет наиболее подходят звёзды главной последовательности спектральных классов от F5 до К5. Годятся не любые из них, а лишь звёзды второго поколения, богатые теми химическими элементами, которые необходимы для биосинтеза, -- углеродом, кислородом, азотом, серой, фосфором. Солнце как раз и является такой звездой, а наша Земля движется в середине его зоны жизни. Венера и Марс находятся вблизи краёв этой зоны. В результат жизни на них нет.

Итак, можно надеяться, что у любой солнце подобной звезды, обладающей планетной системой, найдётся хотя бы одна планета с условиями, пригодными для развития на ней жизни.

К сожалению, осталось мало шансов обнаружить активную биосферу в Солнечной системе и совершенно непонятно, как искать её и в других планетных системах. Но если где-то жизнь достигла разумной формы и создала техническую цивилизацию, подобную земной, то можно попытаться вступить с ней в контакт; для созданной людьми техники это уже реальная задача.

Заключение

Высокоорганизованная жизнь может существовать лишь на таких планетах, которые общаются вокруг старых звезд. Ведь процесс эволюции от момента зарождения простейших форм жизни до развития высших форм цивилизации требует значительных промежутков времени.

Кроме того, звезда-солнце должна обладать достаточно спокойным «характером». Её излучение подобно излучению нашего Солнца должно оставаться неизменным на протяжении миллиардов лет.

Это накладывает известные ограничения на предполагаемое количество обитаемых планет. Если учесть возможный процент неблагоприятных вариантов, а также обстоятельство, что жизнь может возникать на разных планетах в различные эпохи и, следовательно, в различные эпохи достигать своей высшей стадии развития, то все же окажется, что вокруг нас в Галактике существует достаточно большое число разумных цивилизаций. И это только в нашей Галактике, а ведь в наблюдаемой области Вселенной имеется несколько миллиардов таких звездных островов.

Во всяком случае, в настоящее время у нас нет сомнений в том, что земное человечество - не единственная разумная цивилизация Вселенной. Это естественный и закономерный вывод из всех наших знаний в области астрономии, физики, биологии, философии.

 

Список литературы

1. Бабущкин А.Н. Современные концепции естествознания: Лекции. 3-е изд., испр. и доп. - СПб.: Издательство "Лань", 2002. - 224 с., ил. - (Учебники для вузов. Специальная литература).

2. В.В Горбачев Концепции современного естествознания: - М.: ООО «Издательский дом «Оникс 21 век»: «Издательство «Мир и образование»2003.-592 с: ил.

3. Гуляев С.А., Жуковский В.М., Комов С.В. Основы естествознания. Екатеринбург: УралЭкоЦентр, 2000. 560 с.

4. Карпенков С.Х. Основные концепции естествознания. М.: Культура и спорт, ЮНИТИ, 1998, 208 с.

5. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. Москва: Агар, 1996. 384 с.

6. Найдыш В.М. Н20 Концепции современного естествознания: Учебник. — Изд. 2-е, перераб. и доп. – М.: Альфа-М; ИНФРА-М, 2004. — (в пер.)

7. Юрлов В.Ф\ Концепции современного естествознания. Киров: Г П У, 1997. 253 с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: