Радиация (термоядерный синтез и термоядерная реакция)

 

Синее свечение Вавилова-Черенкова - единственная возможность для человека напрямую ощутить (в данном случае - увидеть) радиацию.

 

К сожалению, наши органы чувств ничего не скажут нам, даже если мы попадем под удар ионизирующего излучения, которое убивает за минуту. Радиационная опасность АЭС стала частью современной культуры, на которой играет множество конкурентов ядерной энергетики - и идеологи термоядерных программ не остаются в стороне, обещая “чистую”, лишенную радиации, энергетику.

Так ли это? Откровенно говоря, нет. Будущие термоядерные электростанции будут ядерными объектами, со всеми присущими атрибутами (вплоть до экологов, приковывающих себя к заборам), однако разница с АЭС все же есть. Сегодня мы попробуем сравнить разнообразные аспекты радиационной опасности, исходящей из АЭС и гипотетической ТЯЭС, отталкиваясь от расчетов, проведенных для строящегося токамака ИТЭР.


Пример расчета радиационных полей в здании ИТЭР в работе. Видно, что ближе к самому реактору (он находится в белом круге в центре) поля достигают 40 Зв/ч (4000 Р/час).
Итак, прежде всего надо разделить два понятия. Повреждающим организм воздействием обладает ионизирующее излучение, а вот его источником на ядерных объектах служат нестабильные версии атомов - радиоизотопы (радионуклиды). Опасность радионуклидов измеряется их радиотоксичностью, т.е. “ядовитостью” при попадании внутрь человека. Поскольку реально опасные дозировки для некоторых изотопов начинаются с сотен нанограмм, то вопросы изоляции радинуклидов от человека носят принципиальный характер. Радиоактивный атом не уничтожить, к нему нет антидота - поэтому тема обращения с радиоактивными отходами (т.е. отходами, содержащими распадающиеся радионуклиды) одна из самых дорогостоящих во всем, что касается ядерной индустрии.

 


Герметично одетые инспекторы на АЭС Фукусима защищаются от радионуклидов, а не от излучения.

Одноразовая одежда персонала, шлюзование, спец-вентиляция, и спец-спец-вентиляция, установки для выпаривания жидкостей, которыми смываются малейшие следы радиоактивных загрязнений, и цементирования остатка от выпаривания - подобные системы - это ежедневная реальностью АЭС, радиохимических заводов и даже медицинских лабораторий, готовящих радиоактивные фармпрепараты.

 


Изолированная "горячая камера" для радиохимической работы.

Откуда же берутся нестабильные атомы? Из ядерных реакций. Например, в обычном реакторе с водой под давлением (типа ВВЭР) быстрый нейтрон способен выбить из атома кислорода воды 16 О протон и превратить его в быстро распадающийся изотоп азота 16 N. Тот в среднем за 7 секунд распадется обратно в 16 О, попутно излучив квант гамма-радиации. Другим вариантом является цепная реакция деления урана, на которой работает атомный реактор. Каждый раз атом 235U распадается на 2 более легких ядра, и только в незначительном количестве случаев они стабильны, а подавляющее число дочерних продуктов распада – весьма радиоактивные вещества.

Таким образом, два основных канала наработки радиационного потенциала в ядерном реакторе - это активация всего вокруг нейтронами и наработка радиоактивных продуктов ядерных реакций. Оба эти канала есть в любой АЭС и будет в гипотетической ТЯЭС. Разница только в деталях.


Активация.


Если взять единственную доступную на сегодня реакцию, на которой может работать термоядерный реактор - слияния дейтерия и трития (D + T -> 4He + n), то на киловатт мощности мы получим в несколько раз больше нейтронов, чем в ядерном реакторе. Причем эти нейтроны будут гораздо более энергитичными, рождая гораздо больше активированных изотопов в окружающей конструкции. Если не предпринимать каких-то усилий по утилизации этого потока нейтронов, то в этом аспекте - радиационном потенциале активации конструкции ТЯЭС с треском проиграет АЭС. Так, для ИТЭР масса активированных деталей составит 31000 тонн, тогда как для типичного 1000-мегаваттного (т.е. в 6 раз более мощного, чем ИТЭР, если считать по тепловой мощности) ядерного реактора вес активированных конструкций оценивается в 8000 тонн.


Разделка корпуса реактора на части под водой.

Кстати, степень активации конструктивных материалов часто обусловлена примесями, например, для стали важными элементами являются примеси кобальта, ниобия и калия. Не смотря на содержание в районе десятков грамм на тонну, именно они будут определять степень радиоактивности конструкции после пребывания в нейтронном потоке. Это одна из причин, по которой ядерная индустрия требует высокоточных и высокотехнологичных материалов.

Мощность потока радиации от активированных конструкций внутри ИТЭР через сутки после останова будет в пределах 10000-50000 рентген/час, типичного ядерного реактора - 1000-15000 рентген/час. Такие поля убивают за минуты, поэтому все это добро - радиоактивные отходы, которые после завершения карьеры реактора необходимо разрезать, отсортировать по активности и отправить на хранилища радиоактивных отходов. Самое интересное, что общее количество радиоактивных атомов в этих тысячах тонн составляет всего несколько килограмм (в тяжелых случаях - несколько десятков).


Расчет активации конструкций ИТЭР: слева вверху поле в вакуумной камере токамака в зивертах в час через сутки после останова, слева внизу - снижение радиоактивности с годами, справа внизу - снижение радиоактивности, логарифмическая шкала в секундах. Виден расклад по вкладу разнообразных изотопов в радиоактивность.

Стратегия работы с этим радиоактивным наследством выглядит так - подождать 10...20 лет, пока распадутся самые короткие (а значит и самые активные) изотопы, в т.ч. уменьшится содержания активированного кобальта (знаменитого 60Co из “кобальтовой бомбы” с периодом полураспада 5.3 года), а затем разобрать и рассортировать на отходы, которые можно размешать до безопасного уровня, например стальную арматуру, отходы требующие недолгого хранения и отходы, требующие длительного хранения. Последних набирается обычно порядка 10% от общей массы, и время хранения до распада активированных атомов до безопасных уровней составляет 100...1000 лет. Довольно много, но дальше мы увидим и совсем другие цифры.


Еще одна похожая картинка - активация качественной Nuclear grade нержавеющей стали в ИТЭР-условиях. Цифры даны в зивертах в час/кг Видно, что хотя за первые 40 лет уровень активности значительно падает, касаться крупных деталей из такой стали не стоит и через 200 лет.

Ну и конечно, и во время работы реакторов и после их остановки постоянно должен проводится комплекс мероприятий по изоляции радионуклидов внутри герметичных оболочек, для этого предназначеных - барьеров нераспространения. Кроме недешевых конструкционных/эксплуатационных мероприятий (например, на ИТЭР сверлить бетон нельзя, и поэтому весь монтаж выполняется на встроенные при заливке в бетон металлические платы) есть еще и борьба с потенциальными авариями.


А вот так выглядит дезактивация радиохимических установок - все заливается полимерной пленки, которая отдирается от стен вместе с радионуклидами

Интересно, что на сегодня порядка сотни остановленных ядерных реакторов были полностью разобраны, иногда с довольно головоломными приемами, типа “разрезание корпуса реактора под водой роботами” или “залить все полмерной пеной, разрезать на куски и вывести на хранение”. Тем не менее, технология эта отработана, и значительная часть из десятков тысяч тонн после сортировки и отделения особо активных частей оказывается годной к переплавке/другому повторному использованию. Особенно преуспели в таких операциях немцы, разобравшие полностью 11 энергетических реакторов и десяток опытных.


Пример разбора АЭС до состояния чистого поля.


Долговременное хранилище радиоактивных отходов в бывшей солевой шахте.

Резюмируя - наличие нейтронов приводит к тому, что ядерный или термоядерный реактор, независимо от наличия в нем ядерного топлива, становится объектом со значительным ядерным потенциалом. Это означает постоянную борьбу за изоляцию радионуклидов, контроль со стороны надзорных органов и не иллюзорную смертельную радиационную опасность, в т.ч. для “чистого” термоядерного реактора. Но это еще не самое плохое.

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: