Тема: Влияние технологических факторов на несущую способность деталей машиностроения

 

Наиболее существенными технологическими факторами, влияющими на несущую способность деталей машиностроения, являются остаточные напряжения, анизотропия механических свойств, состояние поверхностного слоя, во многом зависящие от технологии изготовления.

Остаточные напряжения. Остаточными напряжениями принято называть те напряжения, которые присутствуют в детали, свободной от воздействия внешних, в том числе, и реактивных, сил или градиентов температуры. Эти напряжения существуют и уравновешиваются внутри тела после удаления причин, вызвавших их появление.

Причиной возникновения остаточных напряжений первого рода, макронапряжений, является, как правило, остаточная деформация части объема детали или неравномерность остаточной деформации всей детали вследствие необратимых объемных изменений в материале из-за неоднородной по сечению пластической деформации при холодном или горячем деформировании, неравномерного распределения температур по объему изделия при его нагреве и охлаждении и неравномерности по сечению конструктивного элемента процесса фазовых превращений при термообработке и т.п.

Величина остаточных напряжений не может превышать величины предела текучести. Если в момент возникновения остаточных напряжений их уровень будет больше , то со временем за счет релаксации он снизится,

.

Остаточные напряжения особенно заметно могут сказываться на механических свойствах пластичных материалов. В зависимости от знака они могут как повышать прочность, так и снижать ее. Для снятия остаточных напряжений применяют отжиг, который обеспечивает снятие остаточных напряжений практически в любых сталях. Снять остаточные напряжения можно также путем пластического деформирования металла по специальным режимам.

Действие остаточных напряжений аналогично действию постоянных напряжений от статических нагрузок. Учет этих напряжений в расчетах сводится к сложению с напряжениями с напряжениями, возникающими в элементах конструкций под действием приложенных внешних нагрузок.

Остаточные напряжения растяжения могут служить самостоятельной причиной образования трещин и разрушения конструктивных элементов, изготовленных из высокопрочных материалов с малой пластичностью, или материалов, склонных к хрупкому разрушению в реальных условиях эксплуатации. Часто встречаются случаи образования трещин, вызванных остаточными напряжениями в сварных соединениях, фасонных отливках, закаленных деталях. С другой стороны, конструкционная прочность может быть повышена за счет искусственного наведения в деталях остаточных напряжений, особенно работающих при переменных напряжениях.

Анизотропия механических свойств. Одним из основных допущений при расчетах элементов конструкций на прочность в большинстве случаев является предположение однородности и изотропии материала. Между тем в действительности большинство реальных материалов и изделий из них обладают анизотропией механических свойств. Когда анизотропия незначительна, ею можно пренебречь. Во многих других случаях неучет анизотропии может привести к существенным ошибкам как при конструировании, так и при эксплуатации изделий. Используя характеристики механических свойств материалов, приводимые в справочной литературе, при прочностных расчетах следует иметь ввиду, что эти характеристики, как правило, получены в процессе испытаний образцов, вырезанных из заготовок с изотропными свойствами.

Существует несколько видов анизотропии: гомогенная, которая обусловлена неравно вероятным распределением ориентировок анизотропных кристаллов при кристаллизации поликристаллических материалов; гетерогенная, связанная с определенной текстурой, полученной вследствие технологической операции и анизотропия, вызванная ориентированными остаточными напряжениями.

Анизотропия механических свойств материала может проявляться по-разному. Один и тот же материал может быть, например, изотропным по характеристикам упругости, мало изотропен по характеристикам прочности и сильно анизотропен по характеристикам пластичности, усталости и т.п.

Учет анизотропии при разработке изделий способствует повышению их надежности и долговечности, а также позволяет наиболее полно использовать все возможности конструкционного материала.

При расчетах на прочность наиболее часто учитывают анизотропию упругих свойств таких сильно анизотропных материалов, как армированные стеклопластики, слоистые и волокнистые композиционные металлические материалы, древесина и др. Для этих материалов на основе накопленных экспериментальных данных создан соответствующий расчетный аппарат, базирующийся на основах теории упругости, который позволяет решать практические задачи.

Применительно к широко используемым в современной технике конструкционным материалам – металлам и их сплавам при расчетах учитывают, в основном, только анизотропию сопротивления деформированию и разрушения, пренебрегая влиянием анизотропии упругих свойств на изменение напряженного состояния. Сложность учета анизотропии механических свойств при прочностных расчетах заключается в использовании в определяющих уравнениях большого количества требующих экспериментального определения характеристик материала, что чрезвычайно громоздко. Отметим, что лишь для ортотропного тела в общем виде требуется 12 констант материала. Даже в этом случае определение 12 характеристик слишком сложно. Поэтому с практической целью для оценки влияния анизотропии на несущую способность изделия чаще всего пользуются приближенными коэффициентами.

 

1. Назовите виды анизотропии?

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: