Патофизиология печени

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ. Печень ответственна за снабжение организма энергией в качест­ве центрального метаболического органа.Она воспринимает из систе­мы кровообращения воротной вены резорбированные из пищеваритель­ного тракта вещества, расщепляет их и после метаболизирования снова переводит их в кровообращение.Таким образом, весь организм непрерывно снабжается аминокислотами, белками, углеводами и липи­дами.Печень может обезвреживать чужеродные экзогенные вещества, а также эндогенные синтезированные, обладающие токсическими свойс­твами вещества.Наконец, печень образует желчь, следовательно, пе­чень обладает важной экскреционной функцией.Предпосылкой для по­нимания патофизиологии печени является понимание ее структуры и физиологической функции.

МИКРОСТРУКТУРА. Микроанатомической структурной единицей печени является доль­ка, которая состоит из балок печеночных клеток, которые радиально отходят от центральной вены.Между балками пролегают синусоиды, которые воспринимают как артериальную, так и венозную кровь от разветвлений сосудов перипортальных областей, и они выложены си­нусоидальным эндотелием и купферовскими клетками.Дольку печени окружают примерно 5-6 перипортальных полей.В перипортальных полях находятся, наряду с конечными разветвлениями портальной вены и а.hepatica, небольшие желчные ходы, которые впадают в протекающие между печеночными клетками желчные капилляры.От располагающихся в перипортальных полях концевых разветвлений сосудистых систем v.portae и a.hepatica через синусоиды печени к центральной вене оттекает кровь.Между выстланным эндотелием и купферовскими клет­ками, синусоидами и балками печеночных клеток находится прост­ранство Дисса.Поскольку синусоиды характеризуются отсутствием ба­зальной мембраны, и пространство Дисса отграничено очень пористо синусоидальным эндотелием и купферовскими клетками, то плазма крови вытекает из синусоидов в пространство Дисса через эти поры, так что гепатоциты непосредственно омываются кровью.

ПЕЧЕНОЧНЫЙ АЦИНУС. В то время как долька печени является микроанатомической су­бединицей печени, печеночный ацинус представляет собой функцио­нальную микроединицу печени.Ацинус печени определяется как функ­циональная масса паренхимы печени, которая окружает перипорталь­ное поле наименьшего калибра, и которая рбеспечивается артериаль­ной и портально-венозной кровью этого перипортального по­ля Концепция печеночного ацинуса по Раппапорту.Кровь из афферентных сосудов портальных полей (П.Ф.), которая оттекает через синусоиды печени к центральным венам (ц.в.), омы­вает гепатоциты зоны 1,2 и 3 со сниженным содержанием кислорода, питательных веществ и гормонов.Зона 1 гепатоцитов соседствует с портально-венозным поступление крови, зона 3 соседствует с пече­ночно-венозным оттоком крови. Артериальная и портально-венозная кровь перипортальных полей ацинуса печени протекает через синусоиды печени в две-три цент­ральные вены по соседству с ацинусом, так что каждая центральная вена дольки печени получает кровь от многих ацинусов печени. Гепатоциты, которые в области снабжения перипортального поля наименьшего калибра собираются в печеночный ацинус, характеризу­ются функциональным зонированием.Это зонирование отражает различ­ное снабжение гепатоцитов одного ацинуса оксигенированной кровью, питательными веществами и гормонами, а также является отражением различного распределения метаболических функций гепатоцитами внутри одного ацинуса.Зона 1 охватывает гепатоциты, которые не­посредственно окружают перипортальное поле; эти гепатоциты омыва­ются кровью с высокой степенью оксигенации и с высоким содержани­ем питательных веществ и гормонов.Зона 3 охватывает гепатоциты, которые внутри ацинуса находятся дальше всего от снабжения кровью перипортального поля, между зонами 1 и 3 находится зона 2 В ацинусе печени в гепатоцитах образуется желчь и сецерниру­ется с желчные канальцы.Желчные канальцы представляют собой кана­лы поперечником 1 мкм, которые образуются на противоположно лежа­щих сторонах двух, максимально трех гепатоцитов.Стенка этих кон­цевых разветвлений отводящей желчь системы образована не из осо­бых клеток, а из стенок гепатоцитов, так называемой каналикуляр­ной мембраны (рис.34.2).Желчные канальцы через промежуточные от­резки соединяются с перипортальными желчными ходами, котрые объединяются в большие внутрипеченочные ходы плазменной мембраны гепатоцитов и их функциониро­вание при транспорте желчных кислот, при зависимом от желчных кислот желчеобразовании и при транспорте веществ в гепатоциты или из них посредством эндоцитоза или экзоцитоза.В области синусои­дальной мембраны гепатоцитов желчные кислоты поступают в гепато­циты посредством связанной с натрием системы носителя и в виде анионов активно выделяется через каналикулярную мембрану в желч­ный каналец.Посредством инвагинации синусоидальной мембраны и эн­доцитотического отшнуровывания происходит отшнуровывание везикул, благодаря чему вещества из пространства Дисса проходят в гепато­циты (напр., инсулин), или через гепатоциты к каналикулярной мембране (напр., Ig A).С другой стороны, образованне в аппарате Гольджи белки мембран или белки плазмы (напр., альбумин или фиб­риноген) транспортируются в форме везикул к синусоидальной мемб­ране и после встраивания везикулярной мембраны в синусоидальную мембрану переносятся в пространство Дисса и затем в кровь.

Ультраструктура и функция составных частей печеночного ацинуса. Важными структурными составными частями ацинуса печени явля­ются гепатоциты, а также эндотелиальные клетки, купферовские клетки и липоциты печеночных синусоидов и пространства Дисса (рис.34.2).Клетки различаются не только в структурном отношении, но и по физиологической функции.В то время как клетки эндотелия из крови печеночных синусоидов посредством эндоцитоза забирают чужеродный материал, купферовские клетки, например, выполняют функцию разрушения эритроцитов.Липоциты, которые называются клет­ками ИТО, локализуются перисинусоидально между эндотелием синусо­идов печени и гепатоцитами, вероятно, осуществляют транспорт жи­ров, при накоплении витамина А и фиброгенезе.

Гепатоциты у человека занимают примерно 80-88% объема печени (64).Клеточная мембрана гепатоцитов может быть подразделена на три различных домена:

1.Синусоидальная область плазматической мембраны, которая прилежит к пространству Дисса.В этой области находятся нерегуляр­ные микроворсинки, которые омываются плазмой крови промежутков Дисса и, таким образом, осуществляют быстрый обмен метаболитов и продуктов секреции между кровью и гепатоцитами.

2.Интерцеллюлярная область плазматической мембраны, которая осуществляет особую функцию интерцеллюлярной адгезии и коммуника­ции гепатоцитов.

3.Каналикулярная область плазматической мембраны, которая иг­рает особую роль в образовании и секреции желчи (рис.34.2).

Наряду с выполнением гепатоцитами функции транспортного эпи­телия, синусоидальная и интерцеллюлярная области плазматической мембраны представляют собой базолатеральную поверхность, и мембрана желчных канальцев является апикальной секреторной поверхностью. В области базолатеральной мембраны гепатоцитов локализуется Nа+,К+-АТФаза, так что в этой области мембраны из клетки "прока­чиваются" ионы натрия и таким образом создается градиент натрия между перицеллюлярной жидкостью (интрацеллюлярное пространство и пространство Дисса) и интрацеллюлярным пространством.Поскольку в области базолатеральной мембраны гепатоцитов также и желчные кис­лоты воспринимаются в гепатоциты посредством связанной с натрием системы переносчика через специфические рецепторы желчных кислот и они в качестве анионов активно сецернируются через мембрану желчных канальцев в просвет желчных канальцев, то между перисину­соидальным и каналикулярным пространствами возникает положитель­ный градиент натрия.Осмотическое равновесие и электронейтраль­ность обусловлены тем, что парацеллюлярный поток воды и ионов натрия происходит вследствие наличия "тесных соединений" в желч­ных канальцах (рис.34.2).Таким образом, происходит зависимое от наличия желчных кислот образование желчи в желчных каналь­цах(8).Образование желчи, зависимое от наличия желчных кислот, локализуется преимущественно в зоне 1 ацинуса печени, поскольку энтерогепатически возрастающая концентрация желчных кислот и пог­лощение желчных кислот гепатоцитами в зоне 1 печеночного ацинуса самые большие Синусоидальная плазматическая мембрана гепатоцитов также в состоянии поглощать вещества посредством эндоцитоза.После инваги­нации синусоидальной мембраны посредством отшнуровки образуются эндоцитотические или пиноцитотические пузырьки, которые транспор­тируются к желчному канальцу и попадают в него.Таким образом дос­тигается не только встраивание компонентов селекционирующей плаз­матической мембраны в мембрану канальца, но, например, и транс­порт инсулина или сецернируемого в желчь Ig A от синусоидальной плазматической мембраны к мембране желчного канальца (61).На другой стороне в гепатоцитах могут новообразованные мембранные белки или белки плазмы в форме везикул транспортироваться к синусои­дальной мембране, везикулы могут встраиваться в синусоидальную мембрану, и белки плазмы посредством эндоцитоза доставляются в кровь (рис.34.2).Таким способом, например, альбумин, фибриноген или ЛПОНП выделяются из гепатоцитов в кровь. Мембрана желчного канальца, которая в форме микроворсинок выступает в просвет желчного канальца, представляет собой замеча­тельный структурный компонент для образования желчи.Желчные кис­лоты модулируют проницаемость этой мембраны и играют, вследствие их свойств как детергентов, важную роль при выделении составных частей мембраны или ферментов (напр., щелочной фосфатазы,5`-нук­леотидазы или фосфодиестеразы) из мембраны канальцев в желчь.В области внутриклеточной плазматической мембраны соседние гепатоциты соединены между собой при помощи соединительных комп­лексов."Тесные соединения", которые также называют как Zona occ­ludens, отделяют просвет желчных канальцев от интерцеллюлярного пространства или пространства Дисса, но осуществляют парацеллю­лярный поток воды и катионов (напр., ионов натрия) из интерцеллю­лярного пространства и пространства Дисса в просвет желчного ка­нальца (рис.34.2).Параллельно с "тесными соединениями" вдоль желчного канальца находятся "промежуточные соединения", которые содержат конрактильные микрофиламенты.Посредством похожих на пе­ристальтику сокращений периканаликулярно расположенных узлов из микрофиламентов в "промежуточных соединениях" выполняются не только проталкивающие эффекты в канальцах, а также механическая сила воздействует на интерцеллюлярную мембрану для клеточных по­токов воды и ионов. "Соединения промежутков" представляют собой агрегаты интрамембранных частиц в области интерцеллюлярной плаз­матической мембраны, которые формируют через интерцеллюлярные промежутки от гепатоцита к гепатоциту небольшие каналы.Эти каналы проходимы для ионов и небольших молекул, и таким образом осущест­вляют межклеточные коммуникации, что имеет большое значение для координации секреции желчи в гепатоцитах (21).При холестазе, ко­торый представляет собой нарушение секреции желчи, повышается проницаемость "тесных соединений", барьерная функция "тесных сое­динений", которые разъединяют в норме желчь от интерцеллюлярного пространства, в просвете канальца, нарушена.Это выражается в хо­лестазе в обратном токе желчи в пространство Дисса, что клиничес­ки проявляется в форме желтухи и выражается, например, в повышении концентрации желчных кислот в сыворотке.Плазматическая мемб­рана со структурно и функционально различными доменами окружает цитоплазму гепатоцитов, в которых содержатся многочисленные кле­точные органеллы, как митохондрии, эндоплазматический ретикулум, лизосомы, аппарат Гольджи или цитоскелет.

Эндоплазматический ретикулум гепатоцитов, который у взрослых людей на 40% состоит из шероховатого (содержащего рибосомы) и на 60% из гладкого эндоплазматического ретикулума, может быть при болезнях печени поврежден как в структурном, так и в функциональ­ном отношениях.Синтез белков происходит, главным образом, в шеро­ховатом эндоплазматическом ретикулуме перипортальных гепатоцитов зоны 1 легочного ацинуса.Глазкий эндоплазматический ретикулум от­ветственен за синтез липидов, накопление гликогена, биотрансфор­мацию стероидов, медикаментов и карциногенов, он содержит фермен­ты биосинтеза холестерина, желчных кислот, а также уридиндифос­фат-(УДФ)-глюкуронилтрансферазы, которые, помимо всего прочего, ответственны за конъюгацию медикаментов, билирубина и желчных кислот с глюкуроновой кислотой (57,67).Следовательно, гладкий эн­доплазматический ретикулум имеет функцию обезвреживания ядов.При холестазе, несмотря на гипертрофию, возникает гипоактивность гладкого эндоплазматического ретикулума (68).

Лизосомы богаты гидролитическими ферментами.При холестазе наблюдается повышение числа гепатоцитных лизосом, которые могут содержать билирубин, поврежденные цитоплазматические компоненты и другие составные части мембран (21).В случае болезни Вильсона наблюдается накопление меди и при гемохроматозе-железа, в лизосо­мах.

Аппарат Гольджи находится в многообразных взаимоотношениях с эндоплазматическим ретикулумом и лизосомами, что выражается в концепции GERL-комплекса (Goldi, endoplasmatische Reticulum, Li­sosomen)(62).Аппарат Гольджи имеет функцию "переносчика", напри­мер, в секреции альбумина, фибриногена и ЛПОНП, через синусои­дальную плазматическую мембрану в кровь, а также в направлении желчного канальца, например, при переносе конъюгатов глютатиона в желчь.Таким образом, аппарат Гольджи участвует в секреции желчи и обнаруживает изменения как при холестазе, так и при холорезе (21).

Цитоскелет гепатоцитов состоит из микротрубочек и микрофила­ментов.Среди микрофиламентов различают актинмикрофиламенты, мио­зиновые микрофиламенты и интермедиарные микрофиламенты.Актиномик­рофиламенты особенно расположены вокруг желчного канальца, но связаны с "тесными соединениями". Посредством похожих на перис­тальтику сокращений вокруг желчного канльца и посредством измене­ний плотности "тесных соединений". Микротрубочки с их полыми структурами являются важной составной чатью структуры гепатоцита и играют важную роль во внутриклеточном транспорте метаболитов и новосинтезированного белка (21). Хотя все гепатоциты обладают такими структурами и метаболи­ческими способностями, из структурной концепции печеночного аци­нуса вытекает модель метаболического зонирования печеночной па­ренхимы с уменьшением оксигенации, а также концентрации субстрата и гормонов в крови от зоны 1 к зоне 3.

Метаболическое зонирование печеночной паренхимы. Функциональная микроструктура печени в форме печеночного ацинуса находит свое отражение в модели "метаболического зонирования печеночной паренхимы" (44). Гепатоцит в перипортальной и периве­нозной зоны паренхимы печени в ацинусе различаются по своему снабжению ферментами и субклеточными структурами. Если принять, что активность ключевых ферментов определяют величину способности метаболизма, то можно представить различные функции для перипор­тальной и перивенозной зон (43) (Таб.34.1). Такие при равном ге­патоцеллюлярном содержании ферментов во всех клетках паренхимы печеночного ацинуса возможны различные метаболические функции в различных зонах ацинуса, поскольку зоны подвергаются различному управлению посредством различий в концентрации притекающих субс­тратов.

Таким образом, концентрация кислорода в перипортальной крови увеличивается и становится такой же, как и в перивенозной крови, также и взаимоотношения отдельных грмонов, как инсулин, глюкагон, катехоламины изменяются во время пассажа по печени, поскольку скорость расхода отдельных гормонов может быть различной. Это оз­начает, что перипортальная зона характеризуется гормональными приказами, по сравнению с перивенозной зоной, возникает зональная гетеррогенность сигнала Таблица 34.1. Модель метаболического зонирования печеночной паренхимы (по Fungermann)

Перипортальная зона                                                            Перивенозная зона

Окислительный энергетический метаболизм Окисление жирных кислот Цитратный цикл Дыхательная цепь Выделение глюкозы Глюконеогенез Синтез гликогена из лактата Распад гликогена до глюкозы Превращение аминокислот Переход аминокислот до глю­козы Распад аминокислот Синтез мочевины из азота аминокислот Поглощение глюкозы Гликолиз Синтез гликогена из глюкозы Распад гликогена до лактата Липонеогенез
Обезвреживание Синтез мочевины Оксидативная защита Выделение желчных кислот Выделение билирубина NН 43 Образование глутамина Биотрансформация

Печень в качестве центрального метаболического органа выпол­няет важную роль в обмене углеводов, жиров и протеинов.

Обмен углеводов и печень. Ключевую роль выполняет печень при поддержании гемостаза глю­козы.В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час.Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконе­огенезом из лактата, аминокислот и глицерина (43).При обычном питании с потреблением углеводов, равном примерно 100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час.Мозг и эритроциты потребляют только пример­но 7,5 г в час.Избыточная глюкоза прежде всего воспринимается пе­ченью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение. Фруктоза превращается в печени при помощи фермента фруктоки­назы во фруктозо-1-фосфат и, наконец,альдолазой печени переводит­ся в триозы глицеринальдегид и дигидроксиацетон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной пе­чени в лактат превращается около 70% поглощенной фруктозы.При ин­фузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лактатацидоза, в то время как при инфузии глюкозы в крови наблюдается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследс­твие очень высокой активности фруктокиназы в печени, с полувреме­нем, равным 18 минутам, фруктоза очень быстро переводится в пече­ни в лактат. Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляет­ся посредством фосфорелирования специфической галактокиназой из крови.Элиминация галактозы через рот или после внутривенной инъ­екции галактозы применяется для характеризации функции печени (86).

Нарушения метаболизма углеводов при заболеваниях печени. Поскольку печень работает как глюкостат для целей глюкозого­меостаза организма человека, то заболевания печени ведут к гипог­ликемии, но чаще к гипергликемии ("гепатогенный диабет").Генети­чески обусловленные дефекты в метаболизме углеводов в печени ве­дут к тяжелым врожденным заболеваниям с функциональными ограниче­ниями печени.

Гипергликемия и "гепатогенный диабет". При хронических заболеваниях печени, особенно при циррозах, часто наблюдается нарушение гомеостаза глюкозы.Нарушение гомеос­таза глюкозы у больных с циррозом печени выявляется часто при проведении тестов на толерантность к инсулину (18).Примерно половина всех больных с циррозом печени обнаруживают патологическую толерантность печени и в 10% мягкий корригируемый диетой и суль­фанилмочевины сахарный диабет Наблюдаемый при циррозе печени гиперинсулинизм является следствием уменьшенного распада инсулина в печени.С другой сторо­ны, несмотря на повышение периферического уровня инсулина, в кро­ви у больных с циррозом печени наблюдается уменьшение толерант­ности к глюкозе, у больных с циррозом печени наблюдается резис­тентность к инсулину.Резистентность к инсулину является следстви­ем уменьшения сродства или числа рецепторов инсулина, поскольку у больных с циррозом печени наблюдается уменьшение числа рецепторов инсулина в моноцитах, эритроцитах и жировых клетках (60,85).В не­которых случаях резистентность к инсулину дополнительно может быть обусловлена дефектом рецепторов, а также нарушением реакций, которые ведут к активированию рецепторов пострецепторными дефектами.Резистентность к инсулину, с другой стороны, снова приводит к уменьшению толерантности глюкозы.Таким образом, патогенез гепа­тогенного сахарного диабета попадает в порочный круг, в котором заболевание печени ведет к уменьшению степени превращения глюкозы и, следовательно, к гипергликемии.Гипергликемия ведет к гиперин­сулинемии, поскольку распад инсулина в печени замедляется при повреждениях печени.Гиперинсулинемия характеризуется?"Догоп"-регуляцией рецепторов инсулина, и понижением числа рецепторов инсу­лина, следствием чего является резистентность инсулина.Резистент­ность инсулина ведет к гипергликемии через понижение превращения глюкозы.

Гипогликемия. Напротив, гипогликемия при заболеваниях печени наблюдается редко, поскольку эта функция занимает только примерно 20% парен­химы печени, и чтобы избежать снижения уровня сахара крови до ги­погликемических значений, и поскольку почки могут воспринимать часть образования глюкозы печенью при хронических заболеваниях печени.По этой причине гипогликемии прежде всего наблюдаются только при остром гепатите, который частично является следствием понижения запасов гликогена, нарушений снабжения глюкозой и нару­шений глюконеогенеза в печени, а также уменьшения степени актива­ции инсулина печенью.

Нарушения метаболизма галактозы. При галактозэмии имеет место генетический недостаток галакто­зо-1-фосфат-уридилтрансферазы, так что может может возникнуть не­достаток галактозы, галактитела и галактозо-1-фосфата в теле при повреждении функции печени, почек и мозга и при развитии катарак­ты.Поскольку галактоза является составной частью молочного саха­ра, то клиническая симптоматика развивается сразу после рождения и требует немедленного питания младенцев без галактозы.

Болезни запасания гликогена. Болезни накопления гликогена характеризуются нарушениями ме­таболизма с отложением гликогена в различных органах, в основном, в печени, в мышцах и в почках.В соответствии с генетически обус­ловленным дефектом фермента различают 10 различных типов заболе­вания накопления гликогена (табл.34.2).Господствующее проявление симптомов в печени прежде всего наблюдается при типах 1,3,6, и 9.Клинически при заболеваниях накопления гликогена вследствие уменьшенного освобождения глюкозы из гликогена следует особое внимание обращать на гипогликемию при уменьшении потребления пи­щи, так что становится необходимым последовательное трехчасовое питание в течение дня, а также ночью, во избежание гипогликемии.

Метаболизм белков и печень. У взрослых людей с весом тела около 70 кг 12 кг относятся к белкам, из которых 200-300 г. ежедневно подлежат расходу и нео­синтезу. Из них белки мускулатуры составляют 53% и белки печени 20%. После мускулатуры + печень - орган с наиболее интенсивным синтезом белка. Печень синтезирует из аминокислот ежедневно 50 г. белка, из которых 12 г. относятся к альбумину. Также и другие белки плазмы, например, фибриноген, факторы свертывания, аль­фа 41 0-антитрипсин, апопротеины, церулоплазмин - синтезируются в конечном итоге в печени. Необходимые для синтеза белков аминокисло­ты в основном получаются при распаде эндогенных белков, при био­синтезе неэссенциальных аминокислот и из поставляемых с питанием белков, которых следует принимать около 90 г. При уменьшении ежедневного подвода белков до 45 г возникает отрицательный баланс азота.

Обмен аминокислот и печень. Пчень занимает такие центральное место в аминокислотном обме­не (рис.34.4) (29). Спектр аминокислот, подвозимых в крови портальной вены в печень, претерпевает в печени изменения, поскольку аминокислоты частично могут распадаться до мочевины, частично

участвуют в биосинтезе белков или глюкозы, частично проходит че­рез печень неизмененными. Поскольку в печени преимущественно рас­падаются ароматические аминокислоты (фенилаланин, тирозин и мети­онин), в мускулатуре распадаются главным образом аминокислоты с разветвленной цепью (валин, лейцин или изолейцин), кровь печеноч­ной вены содержит относительно более высокий уровень аминокислот с разветвленными цепями, по сравнению с кровью воротной вены.Ами­нокислоты с разветвленными цепями в мускулатуре и в головном моз­ге служат для получения энергии.Напротив,ароматические аминокис­лоты, которые конкурируют с аминокислотами с разветвленными цепя­ми за транспортные системы в гематоэнцефалическом барьере, прев­ращаются в нейротрансмиттеры.Обезвреживание аммиака в головном мозге достигается посредством образования глютамина из глютама­та.Глютамин с кровью транспортируется к почкам и к печени, и слу­жит в почках в качестве субстрата для выведения аммиака в мозге и, следовательно,для регуляции кислотно-щелочного равновесия при помощи почек.В печени происходит обезвоживание аммиака из глюта­мина через цикл мочевины.Образование мочевины представляет собой определенную ступень обезвреживания мочевины в печени, поскольку мочевина выделяется с мочой, и образование мочевины является не­обратимым.

Обезвреживание аммиака и функция печени в качестве регулятора величины рН. Биосинтез мочевины и глютамина представляет собой важнейшую возможность обезвреживания аммиака печенью.Синтез мочевины проис­ходит в печени, в цикле мочевины, открытом Krebs и Henseleit (46).Глютамин образуется при переносе аммиака из глютамата пос­редством глютаминсинтетазы.Отщепление ионов аммония от глютамина производится посредством глютаминазы.Синтез и расщепление глюта­мина происходит совместно в глютаминовом цикле.В соответствии с концепцией метаболического зонирования печеночного ацинуса цикл мочевины и реакция глютаминазы глютаминового цикла локализуется в перипортальной зоне, в то время как реакция глютаминсинтетазы глютаминового цикла находится в перивенозной зоне (32)(рис.34.5).Поскольку фермент, определяющий скорость цикла мо­чевины, локализующегося перипортально, карбамилфосфатсинтетаза имеет незначительное сродство с ионами аммония (Кm=1-2мМ/л), псравнению с перивенозно локализуемой глютаминсинтетазой глютами­нового цикла (Кm=0,3мМ/л), обезвреживает только при высоких кон­центрациях аммония в цикле мочевины.Ионы аммиака, которые обезв­реживаются при токе перипортальной крови от перипортального в пе­ривенозном направлении не через цикл мочевины, происходит вследс­твие высокого сродства глютаминсинтетазы к аммиаку еще в периве­нозной зоне печеночного ацинуса.Таким образом, аммиак в физиоло­гических концентрацией портальной крови (0,3мМ/л) обезвреживается посредством образования мочевины,а также посредством синтеза глю­тамина. Поскольку при синтезе мочевины в печени, наряду с ионами ам­мония, также используются ионы бикарбоната (см. суммарную формулу на рис.34.5) и синтезируемый в печени, транспортируемый к почкам глютамин выводится в виде ионов аммония посредством печеночной глютаминазы в мочу, и печень в состоянии стабилизировать значение рН посредством изменения скорости синтеза глютамина - таким обра­зом, печень обладает функцией стабилизатора величины рН.При метаболическом ацидозе в печени понижается скорость син­теза мочевины, в ней снижается уровень бикарбоната.Скорость син­теза глютамина в печени повышается, транспортируемый к почкам глютамин отдает больше ионов аммония и, следовательно, протонов в мочу.При метаболическом алкалозе необратимо повышается синтез мо­чевины, расходуется больше бикарбоната.Напротив, вследствие уменьшенного синтеза глютамина в печени, почки уменьшают подачу глютамина для выведения ионов аммония в мочу (рис.34.5).

Нарушения метаболизма аминокислот и синтеза мочевины при болезнях печени. При острых и хронических заболеваниях печени могут возникать изменения обмена аминокислот и белков вследствие уменьшения функ­циональной массы гепатоцитов и вследствие наличия портосистемного шунта потока крови. Нарушения обмена аминокислот при хронических заболеваниях пе­чени выявляются тем, что спектр аминокислот в плазме по сравнению со здоровыми при хронических заболеваниях печени характеризуется понижением содержания аминокислот с разветвленными цепями на 30-50% (лейцин, изолейцин, валин) и повышением содержания арома­тических аминокислот (тирозин, фениламин и метионин).Понижение содержания аминокислот с разветвленными?аминокислотами(цепями) приводит при хронических заболеваниях печени к наблюдаемой гиперинсулинемии.Гиперинсулинемия обусловлена повышенным распадом аминокислот с разветвленными цепями на переферии, в мускулатуре и жировой ткани (84) и, следовательно, к понижению содержания этих аминокислот в плазме.Повышение содержания ароматических аминокислот в плазме при хронических заболеваниях печени объяснсется уменьшением распада этих аминокислот в печени вследствие наруше­ния функций печени, поскольку содержание ключевых печеночных фер­ментов распада ароматических аминокислот, для триптофана - трип­тофанпирролаза, в печени понижено (84). Поскольку при хронических болезнях печени и при циррозе также уменьшена скорость синтеза мочевины вследствие уменьшения содер­жания ферментов цикла мочевины, таким образом, объясняется повы­шение содержания аминокислот плазмы, особенно ароматических ами­нокислот, а также в уменьшенном распаде аминокислот в цикле моче­вины (32).Поскольку обезвоживание ионов аммония в цикле мочевины локализуется в перипортальной зоне печеночного ацинуса, и при циррозе особенно повреждается морфологически перипортальный реги­он, что объясняется уменьшением скорости синтеза мочевины при хронических заболеваниях печени и наступившей гипераммониемией, а также склонностью к развитию метаболического алкалоза.Метаболи­ческий алкалоз имеет место при хронических заболеваниях печени вследствие снижения потребления бикарбоната вследствие уменьшения скорости синтеза мочевины, причем компенсаторно для обезврежива­ния аммиака в перивенозной зоне печеночного ацинуса может быть повышен синтез глютамина.(32)(рис.34.5). При наличии застойной печени перивенозная зона печеночного ацинуса необратимо повреждена в отношении обезвреживания ионов аммония посредством синтеза глютамина.Это может приводить к мета­болическому ацидозу вследствие уменьшенного выделения аммония почками при застойной печени (32).Таким образом, изменения мета­болизма аминокислот и обезвреживания аммония при хронических бо­лезнях печени представляют собой важные факторы в патогенезе из­менений кислотно-щелочного равновесия и в возникновении печеноч­ной энцефалопатии. Нарушения метаболизма белка при заболеваниях печени.

Изменения белков плазмы при заболеваниях печени могут отра­жать изменения биосинтеза белка в печени, поскольку многие белки плазмы синтезируются исключительно в печени. Альбумин: больные с циррозом печени часто имеют пониженный уровень сывороточных альбуминов.Этот уровень может быть отражени­ем пониженного запаса альбуминов в плазме, а может при нормальном запасе плазменных альбуминов быть также выражением эффекта раз­бавления.Так, у больных с циррозом печени и гипоальбуминемией, а также с асцитом часто наблюдается нормальный запас альбумина в плазме и даже повышенный общий альбумин в теле, вследствие повы­шения экстраваскулярного запаса альбумина.Таким образом, при ха­рактеризации метаболизма альбуминов при болезнях печени следует проводить различие между больными с асцитом и без него. У больных с циррозом печени без асцита гипоальбуминемия обоз­начает уменьшение синтеза альбуминов, интраваскулярного запаса альбуминов и общего альбумина всего тела.Ежедневный синтез альбу­мина может уменьшаться при циррозе с 10-12 г до 4 г. У больных с циррозом печени с асцитом, несмотря на гипоальбу­минемию, синтез альбумина, напротив, очень часто бывает нормаль­ным.Секреция синтезируемого в гепатоцитах альбумина в плазму мо­жет нарушаться коллагеном цирроза, так что до 89% новосинтезиро­ванного альбумина непосредственно переходит в асцит и, таким об­разом, несмотря на нормальный синтез альбумина, может возникать гипоальбуминемия.По этой причине уровень сывороточного альбумина не находит выражения в производительности синтеза печенью, вследствие длительного времени полужизни распада альбумина, кото­рое составляет около 3-х недель. Напротив, определение факторов свертывания в крови является отражением производительности синте­за в печени, поскольку время полужизни факторов свертывания очень невелико. Факторы свертывания: печень играет важную роль в гемостазе, поскольку она ответственна за синтез большинства факторов сверты­вания и за распад фибринолитических факторов.Печень синтезирует фибриноген (фактор 1) и факторы свертывания 5, 7, 9 и 10, причем, за исключением фибриногена, все другие факторы для синтеза нужда­ются в витамине К.Тяжелые острые болезни печени могут, посредс­твом выпадения функции печени, вследствие уменьшения синтеза, привести к быстрому падению содержания факторов свертывания 2, 5, 7 и 10 с удлинением протромбинового времени, поскольку время по­лужизни факторов свертывания лежит между 2 и 4 днями.Уровень фиб­риногена в крови, как правило, не уменьшен.Поскльку для синтеза факторов свертывания 2, 7, 9 и 10 также необходим витамин К, ко­торый в качестве жирорастворимого витамина в кишечнике всасывается при участии желчных кислот и образуется микробами  кишечника, то мальабсорбция, застойная желтуха и стерилизация содержимого кишечника антибиотиками приводят к нарушениям свертывания вследс­твие дефицита витамина К. Введение витамина К устраняет при нор­мальной функции печени эти нарушения свертывания. Наряду с факторами свертывания при тяжелых поражениях пече­ночной паренхимы вследствие нарушений синтеза активность холинэс­теразы и концентрации гаптоглобина и церулоплазмина в плазме по­нижены.

Экстрацеллюлярный фибриногенез. матрикс - коллаген. Соединительная ткань экстрацеллюлярного матрикса печени со­держит три основные группы макромолекул:1. Коллаген; 2. Протеогликан и 3. Гликопротеины, которые все при циррозе печениобнаруживаются по повышенным концентрациям в печени (73).Коллаген представляет собой гетерогенный класс протеинов, их аминокислотный состав на одну треть представлен глицином и на од­ну четверть пролином и гидрооксипролином. Коллаген очень устойчив по отношению к протеолитическому распаду, только специфические ферменты (коллагеназы) расщипляют коллаген.В печени человека можновыделить пять различных типов коллаге­на, имеющих структурные различия между собой: коллаген типа I, III, IV, V, VI. В нормальной печени человека коллаген типа I и типа III составляют примерно треть всего коллагена печени, кото­рый составляет, в общем, 2-8 мг/1г сырого веса печени. Содержание коллагена повышается при циррозе до 30 мг/1мг сырового веса пече­ни, так что в конечной стадии цирроза печени печень может содер­жать примерно 15 г коллагена. Коллаген типа IV, V и VI в нормаль­ной печени человека количественно представляют собой менее значи­мые компоненты. Все типы коллагена находятся, в том или ином ко­личественном выражении, в области портального факта, в пространс­тве Дисса и в фибротических фактах печени, причем гепатоциты, купферовские клетки, клетки Ито, эндотелиальные клетки синусоида, а также клетки портального тракта и воспалительные клетки способ­ны к синтезу коллагена.Фибриногенез: под фибриногенезом понимают образование соединительной ткани, например, в печени.При всех формах цирроза печени до сих пор наблюдалось повышенное содержа­ние коллагена.При биосинтезе коллагена внутриклеточно в качестве предстадий сначала образуется препроколлаген и после отщепления аминокислот получается преколлаген, гидроксилированием остатков лизина или пролина, например, посредством внутриклеточной пролин­гидроксилазой.Определение активности печеночной пролингидроксила­зы в пунктатах печени применяется для характеристики коллагенсин­тетазы, поскольку может быть обнаружена корреляция между синтезом коллагена и активностью этого фермента в легочной ткани.Проколла­ген подвергается при секреции из клеток, а также внеклеточ­но,дальнейшим ферментативным превращениям посредством проколла­генпептидаз,до того, как он внеклеточно образует соответствующие структуры коллагеновых фибрилл.На поверхности новообразованных коллагеновых фибрилл, а также и в плазме могут быть образованы проколлагеновые фибриллы.По этой причине производится радиоимму­нологическое определение проколлагеновых пептидов, в особенности, проколлагеновых пептидов типа 3, в плазме, для охарактеризации метаболизма коллагена при заболеваниях печени.

Метаболизм липидов и липопротеинов в печени. Роль печени в метаболизме липидов и липопротеинов состоит в синтезе липидов (триглицериды, холестерин и фосфолипиды), липоп­ротеинов (ЛГОНП и ЛПВП), апопротеинов, липопротеинов и ферментов метаболизма липопротеинов и жиров (лецитин-холестерин-ацилтранс­феразы (ЛХАТ), а также в катаболизме хиломикрон, остатков ЛПОНП, ЛПНП и ЛПВП. В липидном и липопротеиновом обмене жирные кислоты с коротки­ми и средними цепями транспортируются из пищи через воротную вену прямо в печень, в то время как жирные кислоты с длинными цепями должны расщепляться в слизистой оболочке тонкого кишечника на триглицериды, они, как и холестерин пищи, транспортируются в виде хиломикрон.Хиломикроны, которые через грудной проток попадают в кровь, посредством липопротеилипазы превращаются в остатки хило­микрон, которые воспринимаются Е-рецепторами аполипопротеинов пе­чени.Экзогенный холестерин здесь смешивается с эндогенным холес­терином и выделяется печенью с желчью, метаболизируется в желчные кислоты или с синтезируемыми в печени триглицеридами выводится в кровь в виде ЛПОНП. ЛПОНП в качестве важнейшего богатого триглицеридами липопро­теина синтезируется печенью, в крови подвергается метаболическому каскаду при взаимодействии с липопротеинлипазой и, вероятно, так­же при участии печеночной триглицеридлипазы в ЛПНП.ЛПНП представляют собой для переферических клеток главный источник холестерина.С другой стороны, частичы ЛПНП восп­ринимаются рецепторами ЛПНП гепатоцитов в клетки печени и лизосо­мальными ферментами разрушаются на компоненты.В гепатоцитах повы­шение содержания свободного холестерина вызывает торможение HMG-СоА-редуктазы, ключевого фермента синтеза холестерина, акти­вацию ацил-КоА-холестерин-ацилтрансферазы и следовательно, накоп­ление свободного холестерина в форме эфиров холестерина и, нако­нец, торможение образования рецепторов ЛПНП в клетках, следствием чего является поглощения холестерина.Зависимое от рецепторов пог­лощение ЛПНП представляет собой существенный элемент регуляции синтеза холестерина в теле и гомеостаза холестерина (10) Наряду с ЛПОНП в печени также происходит первый этап синтеза ЛПВП, образования ЛПВП и передача их в кровь.При воздействии ле­цитин-холестерин-ацилтрансферазы (ЛХАТ), новообразованные ЛПВП превращаются в ЛПВП, причем освобождается эфир холестерина, кото­рый переносится на ЛППП и ЛПВП.ЛПВП транспортируют холестерин из переферических клеток в печень обратно и разрушаются в печени (рис.34.6).Таким образом, ЛПВП представляет собой резервуар для избыточного холестерина переферических клеток, который транспор­тируется к печени и там образует запас холестерина, который ис­пользуется для желчной секреции холестерина, распада желчных кис­лот или для повторной утилизации.Вследствие этой центральной роли печени в метаболизме липопротеинов при заболеваниях печени имеют место качественные и количественные изменения липидов плазмы.

Нарушения метаболизма липопротеинов при заболеваниях печени. При заболеваниях печени с желтухой нередко наблюдается повы­шение неэстерифицированного холестерина в сыворотке, в то время как уровень холестерина оказывается очень часто?.Пониженный уро­вень эфиров холестерина в плазме при заболеваниях печени может рассматриваться во взаимосвязи с пониженной активностью леци­тин-холестерин-ацилтрансферазы (ЛХАТ) в пораженной печени, что находит отражение также в переферической крови и, таким образом, в уменьшенной этерификации холестерина жирными кислотами.При хро­нической застойной желтухе вследствие регургитации желчи, богатой холестерином и лецитином, в плазме наблюдается повышение свобод­ного холестерина и лецитина в крови. Гипертриглицеридемия, которая может наблюдаться при остром и хроническом гепатитах, а также при холестазе, и сильно связана с частицами ЛПВП, обогащенными триглицеридами, объясняется пониже­нием активности печеночной липазы, которая в норме отщепляет триглицериды.С другой стороны, появление богатых триглицеридами ЛПВП при застойной желтухе может объясняться понижением содержа­ния эфиров холестерина в частицах ЛПВП вследствие уменьшения ак­тивности ЛХАТ при уменьшении образования эфиров холестерина. У больных с холестазом в плазме в 99% наблюдается особый ли­попротеин, так называемый липопротеин Х (ЛП-Х), в то время как при отсутствии холестаза ЛП-Х в 97% не может быть обнаружен в плазме (80).Для дифференциального диагноза желтухи, тем не менее, определение липопротеина Х бесполезно, поскольку он повышается при внутрипеченочном и внепеченочном холестазе. Клинически липопротеинемия при хронической застойной желтухе приводит к образованию ксантом в коже, в которых обнаруживаются ошеломляющие количества прежде всего эстерифицированного холесте­рина, наряду со свободным холестерином.

Метаболизм и кишечно-печеночная циркуляция желчных кислот. Желчные кислоты подвергаются кишечно-печеночной циркуля­ции.Ежедневно в печени синтезируется 200-600 мг желчных кислот из холестерина.Этот синтез выравнивается дневной потерей желчных кислот в кале (200-600 мг) и в моче (0,5 мг), так что запас желч­ных кислот в организме человека остается постоянным и равным 3 г. В печени также происходит конъюгация желчных кислот с аминокисло­тами глицином и таурином, сульфатирование, глюкуронирование и глюкозирование.Выделяемые в желчь желчные кислоты при голодании преимущественно попадают в желчный пузырь.Во время пищеварения после сокращения желчного пузыря запас желчных кислот 2-3 раза проходит кишечно-печеночный цикл, причем основная часть желчных кислот резорбируется в терминальной части тонкого кишечника, так что ежедневно, в случае 3-4-кратного приема пищи 12-36 г желчных кислот поступает в тонкий кишечник.Только незначительная часть желчных кислот поступает в толстый кишечник и метаболизируется ферментами микробов.Часть этих желчных кислот резорбируется в толстом кишечнике.Резорбируемые в кишке желчные кислоты кровью воротной вены доставляются к печени и большей частью воспринима­ются гепатоцитами.Небольшая часть желчных кислот экстрагируется гепатоцитами из крови воротной вены и поступает в переферическую циркуляцию, так что при физиологических условиях концентрация желчных кислот в переферической крови составляет 120-200 мкг/дл (3-5 мкмоль/л), что очень низко.Циркулирующие в переферической крови желчные кислоты лишь незначительно выделяются с мочой (0,5 мг/сут=1,3 мкМ/сут), поскольку печень эти желчные кислоты экстра­гирует с высокой эффективностью и выделяет с желчью.Таким спосо­бом запас желчных кислот сохраняется посредством кишечной экс­тракции и секреции в желчь (рис.34.7)(14).

Синтез желчных кислот. В печени происходит синтез первичных желчных кислот (холевая и хенодезоксихолевая кислоты) из неэстерифицированного холестери­на.Первый шаг синтеза желчных кислот состоит в 7а-гидроксилирова­нии холестерина при воздействии расположенной в микросомах холес­терин-7а-гидроксилазы.Это ферментативное 7а-гидроксилирование хо­лестерина является шагом, определяющим скорость биосинтеза желч­ных кислот, активность фермента холестерин-7а-гидроксилазы регу­лируется количеством желчных кислот, воспринимаемых гепатоцитами из воротной вены, посредством торможения по принципу обратной связи.Последующие шаги биосинтеза состоят в перемещении двойной связи от 7а-гидроксихолестерина к 7а-гидроксихолес­тен-4-еn-3-ону.Этот промежуточный продукт представляет собой пункт разветвления для синтеза в направлении холевой кислоты или хенодезоксихолевой кислоты.При помощи 12а-гидроксилирования пос­редством расположенной в эндоплазматическом ретикулуме 12а-гид­роксилазы происходит синтез холевой кислоты.После прохождения этого места разветвления в цитозоле происходит насыщение двойной связи и восстановление 3-оксо-группы в 3а-гидроксигруппу.Когда эти ферментативные реакции на стероидном ядре заканчиваются, при­чем две гидроксигруппы являются предступенями для хенодезоксихо­левой кислоты или три гидроксигруппы являются предступенями холе­вой кислоты в стероидном ядре, то происходит укорочение боковой цепи в митохондриях после гидроксилирования у С-24 и образуются С-24 желчные кислоты, т.е. хенодезоксихолевая или холевая кислоты (детали биосинтеза см. Matern и Gerok)|52|(рис.34.8).

Конъюгация желчных кислот в печени. В печени желчные кислоты перед выделением в желчь конъюгируют с аминокислотами глицином и таурином в соотношении 3:1.Возможно также сульфатирование (65), глюкуронирование (2) и глюкозирование желчных кислот (55) в печени человека (рис.34.9).При помощи этих конъюгаций повышается растворимость желчных кислот.Выделяемые с желчью желчные кислоты в кишечнике подвергаются, если они всасы­ваются неизмененными, дальнейшему метаболизму при помощи бактери­альных ферментов.

Интерстициальное всасывание и бактериальный метаболизм желчных кислот. Неконъюгированные желчные кислоты и глицин-конъюгированные дигидроксилированные желчные кислоты могут всасываться пассивной диффузией в верхней тонкой кишке, поскольку эти желчные кислоты не диссоциируют.Поскольку в просвете верхней тонкой кишки значе­ние рН составляет от 5,5 до 6,5 и значения рК для свободных не­конъюгированных желчных кислот составляют от 5,0 до 6,5 и для глицин-конъюгированных желчных кислот составляют между 3,5 и 5,2, то резорбция этих желчных кислот возможна в верхней тонкой кишке. Основное количество конъюгированных желчных кислот, в особеннос­ти, полярных таурин-конъюгированных желчных кислот и тригидрокси­лированных желчных кислот, резорбируется вследствие диссоциации и посредством активного транспорта в терминальном отделе подвздош­ной кишки. Желчные кислоты, которые поступают в слепую кишку, подверга­ются воздействию бактериальных ферментов.Под действием этих фер­ментов происходит деконъюгация глицин- и тауринкоагулированных желчных кислот, к 7а-дегидроксилированию и к 7а-дегидрогенизиро­ванию желчных кислот.Вследствие бактериального 7а-дегидроксилиро­вания из первичных желчных кислот, холевых и хенодезоксихолевых кислот приводит к 7-кетолитохолевой кислоте, которая в печени превращается в третичную желчную кислоту, уродезоксихолевую кис­лоту (рис.34.8) Транспорт желчных кислот в воротную вену. Резорбируемые в кишечнике желчные кислоты вскоре исключительно кровью воротной вены переводятся в печень. В крови желчные кислоты транспортируются главным образом с альбумином, а также будучи связанным с ЛПВП. Концентрация желчных кислот в крови во­ротной вены составляет 800 мкг/л (20 мкМ/л), т.е. примерно в 6 раз выше, чем в периферической крови. После еды концентрация желчных кислот в крови воротной вены повышается от 2 до 6 раз.

Поглощение желчных кислот или секреция печенью Гепатоцеллюлярное поглощение желчных кислот из синусоидальной крови исключительно эффективно, поскольку при одноразовом пассаже крови более чем 80% желчных кислот экстрагируется из портальной крови гепатоцитами. Поглощение желчных кислот представляет собой осуществляемый переносчиком, зависимый от натрия транспорт, кото­рый определяется активностью Nа 5+ 0, К 5+ 0 - АТФазы и управляется кинетикой Михаэлиса-Ментена. При этом максимальная скорость поглощея (V 4max 0) печенью желчных кислот больше, чем транспортный максимум (Т 4m 0) желчной экскреции (см.рис. 34.2). После коньюгации желчных кислот в гепатоцитах происходит сек­реция желчных кислот в желчные канальцы. Секреция желчных кислот в желчные канальцы также осуществляется с помощью переносчика, хотя и независимого от натрия, причем физиологический внутрикле­точный отрицательный мембранный потенциал предоставляет необходи­мую силу для канальцевой экскреции ионов желчных кислот в желчные канальцы (58)(см.рис.34.2). Рецепторные и транспортные белки ге­патоцитов для поглощения, внутриклеточного транспорта и секреции желчных кислот в желчь частично охарактеризованы (11).

Образование желчи. Желчь представляет собой водный раствор желчных кислот, хо­лестерина, фосфолипидов, билирубина и неорганических электроли­тов. Образование жнлчи производится посредством гепатоцитов, при­чем желчные канальцы изменяют концентрацию и состав желчи. По это причине различают гепатоцитарное образование желчи и канальцевые образование желчи.

Гепатоцитарный поток желчи. При гепатоцитарной секреции желчи в желчные канальцы можно различать зависимый от желчных кислот поток желчи и независимый от желчных кислот поток желчи. Это различие получается из линей­ного соотношения между гепатоцитарной секрецией желчных кислот и потоком желчи. Также если гепатоциты больше не выделяют желчных кислот, еще происходит поток желчи в желчные канальцы, так назы­ваемый независимый от желчных кислот гепатоцитарный поток желчи. У людей образуется около 11 каналикулярной желчи на 1 мкмоль вы­деляемых желчных кислот. Поскольку при интактной энтерогепатической циркуляции выделяется около 15 мкмолей желчных кислот в мину­ту, это обозначаетзависимый от желчных кислот каналикулярный по­ток желчи, равный примерно 225 мл/сутки. Поскольку независимый от желчных кислот каналикулярный поток желчи составляет в то же вре­мя около 225 мл/сут и дуктулярная секреция покрывает 150 мл/день, у людей ежедневно вырабатывается около 600 мл желчи (рис.34.10)(77).Зависимые от желчных кислот каналикулярное образование желчи происходит таким образом, что желчные кислоты путем активного транспорта выделяют в качестве анионов через мембрану желчного канальца в каналец. Для выравнивания осмотического равновесия и для достижения электронейтральности в желчный каналец поставляют­ся вода и ионы натрия, через межклеточные "тесные соединения" в желчный каналец (см.рис.34.2). С транспортом желчных кислот в желчные канальцы связан транспорт лецитина и холестерина в желчь, но не транспорт билирубина. Независимый от желчных кислот канали­кулярный поток желчи, вероятно, происходит при помощи опосредуе­мого Nа 5+ 0/К 5+ 0-АТФ-азой Nа 5+ 0-транспорта и стимулируется фенобарбиталом. Он примерно равен зависимому от желчных кислот каналикуляр­ному образованию желчи.

Поток желчи в ходах. В желчных ходах происходит секреция и/или резорбция неоргани­ческих электролитов и воды, причем гормон секретин ответственен за секрецию в ходах. Примерно 30% основного потока желчи относит­ся к секреции желчи в ходах.

Нарушение метаболизма желчных кислот при заболеваниях печени Циркулирующие в кишечно-печеночном круге желчные кислоты выполняют важные функции (табл.34.3). Из этих главных функ­ций происходят клинические последствия, причем при заболева­ниях печени происходят нарушения в метаболизме желчных кис­лот (31).Болезни печени могут приводить к нарушениям синте­за, конъюгации и желчной секреции желчных кислот, а также к нарушениям поглощения желчных кислот из воротной вены. Нарушения биосинтеза желчных кислот наиболее выражены при циррозе печени (52).При циррозе печени наблюдается уменьшенное образование холевой кислоты вследствие понижения активности 12а-гидроксилазы при биосинтезе холевой кислоты в печени.Понижение интенсивности биосинтеза холевой кислоты

приводит к понижению запаса холевой кислоты у больных с цир­розом печени.Поскольку бактериальное 7а-дегидроксилирование холевой кислоты в дезоксихолевую при циррозе печени наруше­но, то при циррозе печени наблюдается также уменьшение запа­са дезоксихолевой кислоты.Хотя при циррозе печени биосинтез хенодезоксихолевой кислоты протекает без повреждений, общий запас желчных кислот вследствие уменьшения синтеза холевой кислоты уменьшается наполовину.Вследствие уменьшения запаса желчных кислот имеет место уменьшение концентрации желчных кислот в тонком кишечнике при приеме пищи.Таким образом, ре­зорбция жирорастворимых витаминов и жиров нарушается, по этой причине при циррозе печени имеют место куриная слепота (недостаток вит.А), остеомаляция (недостаток витамина Д), нарушения свертывания крови (недостаток вит.К) и стеаторрея. Конъюгация желчных кислот с аминокислотами глицином и таурином в норме происходит при соотношении 3:1 (52).При тя­желом гепатите конъюгация холевой кислоты с глицином пониже­на, так что определение скорости этой конъюгации предлага­лось в качестве прогностического теста для течения острого гепатита.Напротив, сульфатирование желчных кислот при забо­леваниях печени не уменьшается, поскольку активности суль­фотрансфераз желчных кислот в пунктатах у больных с легкими повреждениями печеночной паренхимы или у больных с тяжелым лостазом примерно равны (50).В отличие от сульфатирования, ферментативное глюкуронирование желчных кислот при циррозе печени по сравнению с нормой понижено, как показали измере­ния активности УДФ-глюкуронилтрансферазы желчных кислот в ткани печени при различных заболеваниях печени (56).Также билирубин в печни человека конкурентно тормозит глюкурониро­вание желчных кислот (53). То, что все же при холестазе у человека наблюдается повышенное выделение глюкуронидов желч­ных кислот в моче, можно объяснить глюкуронированием желчных кислот в почках человека (56).

При заболеваниях печени, в особенности при циррозе пече­ни, может быть нарушена секреция желчных кислот (14, 37). Уменьшение секреции желчных кислот при циррозе печени приво­дит к упомянутой стеаторрее и к уменьшению резорбции жиро­растворимых витаминов с соответствующим синдромом недоста­точности. Печеночное поглощение желчных кислот при заболеваниях печени также нарушено. В то время как у здоровых печень экс­трагирует около 85% коньюгированных тригидроксилированных желчных кислот и 60-70% коньюгированных дигидрооксилирован­ных желчных кислот из крови воротной вены, при заболеваниях печени вследствие внепеченочного или внутрипеченочного пор­тосистемного шунта кровотока, вследствие уменьшенной способ­ности гепатоцитов поглощать желчные кислоты из крови и вследствие рефлекса желчных кислот из желчи в кровь имеет место повышение концентрации желчных кислот из крови. Это явление используется в диагностических целях, поскольку по­вышение концентрации желчных кислот в сыворотке представляет собой чувствительный параметр для распознавания заболеваний печени.

Метаболизм желчных кислот и холестаз. Холестаз можно определить как нарушение секреции желчи, причем каждая стадия секреции, начиная от образования желчи в мембране желчного канальца гепатоцитов (внутрипеченочный холестаз) до выделения желчи через сосочек двенадцатиперс­тной кишки (внепеченочный холестаз).Следствием холестаза яв­ляется повышенная концентрация желчных кислот в гепатоцитах с торможением по принципу обратной связи ферментов, опреде­ляющих биосинтез желчных кислот, то есть холестерин-7а-гид­роксилазы.Это приводит к уменьшению биосинтеза желчных кис­лот.Посредством повышения внутрипеченочной концентрации желчных кислот, при холестазе желчные кислоты применяются в качестве субстратов для сульфатирования, глюкуронирования и гидроксилирования.При этом образуются не только сульфатиро­ванные и глюкуронированные желчные кислоты, а также 1- и 6-гидроксилированные желчные кислоты в печени при холестазе (1). Наблюдаемые при холестазе повышенные внутрипеченочные концентрации желчых кислот, в особенности дегидроксилирован­ные желчные кислоты, как хенодезоксихолевые кислоты, могут разрушать гепатоциты в качестве детергентов.Они могут изме­нять состав плазматических мембран гепатоцитов, а также на­рушать биотрансформацию эндогенных субстратов (желчных кис­лот холестерина) и экзогенных веществ (медикаменты), напри­мер, посредством торможения цитохрома Р450 (67,68,76).Таким же образом внутрипеченочное повышение концентраций желчных кислот может усиливать холестаз в форме порочного круга.

Метаболизм билирубина. При физиологических условиях концентрация билирубина в плазме составляет 0,3-1,0 мг/дл (5,1-17,1 мкМоль/л).Если уровень билирубина в плазме составляет около 3 мг/дл (50 мкМоль/л), то клинически это проявляется в форме желтухи склер, слизистых оболочек и кожи. Билирубин происходит из ферментативного разрушения ге­моглобина или гемопротеинов (цитохром 450, цитохром В5, ка­талаза, триптофанпирролаза, миоглобин).После ферментативного освобождения гема из гемоглобина или гемопротеинов посредс­твом микросомальных гемоксигеназ в мембране цитоплазматичес­кого ретикулума посредством активирования кислорода при воз­действии НАДФ-цитохром-с-редуктазы происходит образование а-гидрокси-гема, причем активированный кислород воздействует на а-метиновые мостики циклического тетрапиррола.Благодаря этому расщепляется протопорфириновое кольцо при освобождении монооксида углерода, и возникает комплекс биливердина с железом.После гидролиза комплекса биливердина с железом на железо и биливердин IXа посредством биливердинредуктазы цитозоля происходит восстановление центрального метинового кольца би­ливердина в биливердин IXa2 (45).Поскольку три фермента (микросомальная гемоксиназа и НАДФН-цитохром-с-редуктаза, а также биливердинредуктаза цитозоля), которые катализируют образование билирубина из гема, в форме ферментативного комплекса на поверхности эндоплазматического ретикулума, би­ливердин на этом комплексе восстанавливается в билирубин (рис. 34.11)(91).Таким образом, образованный из биливердина билирубин представляет собой субстрат для билирубин-УДФ-глю­куронилтрансферазы, содержащейся в эндоплазматическом рети­кулуме.УДФ-глюкуронилтрансфераза катализирует образование билирубинмоноглюкуронидов.Затем происходит синтез билирубин­диглюкуронидов, осуществляемый УДФ-глюкуронилтрансферазой (рис.34.12)(6).Для образования билирубиндиглюкыронидов из билирубинмоноглюкуронидов обсуждались возможности спонтанно­го образования диглюкуронидов (83) или ферментативный пере­нос глюкуроновой кислоты от молекулы билирубинмоноглюкурони­да при связывании билирубиндиглюкуронидов посредством билирубинглюкуронозид-глюкуронозилтрансферазы (40).посредством глюкуронирования нерастворимый в воде билирубин приобретает водорастворимость. Нерастворимость в воде образующегося при разложении гема билирубина IXa основывается на том, что образуются внутримо­лекулярные водородные мостики между группой пропионовой кис­лоты пиррольного кольца и азотом не находящихся по соседству внешних пиррольных колец.Таким образом достигается?стери­чески складывание билирубина, что уменьшаются гидрофобные,то есть липофильные свойства.По этой причине неконъюгированный билирубин IXa диффундирует в мозг, плаценту и слизистую ки­шечника.При воздействии световой энергии с длиной волны от 400 до 500 нм внешние пиррольные кольца молекулы билирубина IXa могут поворачиваться вокруг двойной связи.Посредством такой фотоизомеризации молекулы билирубина в так называемый фотобилирубин больше не могут образовываться внутримолеку­лярные водородные мостики.Таким образом, билирубин станивит­ся водорастворимым и, следовательно, он может без конъюгации с глюкуроновой кислотой выделяться в желчь.Эффект фотоизоме­ризации билирубина применяется в случае фототерапии желтуш­ных новорожденных.Посредством облучения кожи синим светом, находящийся в коже билирубин IXA переводится в водораствори­мый фотобилирубин, который связывается с альбумином и кровью переносится к печени и там выводится в желчь.С помощью такой фототерапии удается снизить уровень неконъюгированного били­рубина в плазме до концентрации 5 мг/дл (85 мкМоль/л), даль­нейшее снижение уровня билирубина посредством фототерапии невозможно. Количественно ежедневно у взрослых образуется около 250-350 мг билирубина на кг при распаде гема.При этом глав­ным источником образования билирубина является гем гемогло­бина.Около 70% ежедневно образующихся желчных пигментов воз­никают из гемоглобина при распаде эритроцитов в ретикуло-эн­дотелиальной системе (в селезенке, костном мозге и в печени). Участие печени в ежедневном образовании билирубина сос­тавляет 10-37%, причем в печени главным источником служат микросомальные цитохромы, каталаза, триптофанпирролаза и ми­тохондриальный цитохром b.Также в плазме связанные с гаптог­лобином гемоглобин,метгемоглобин или метгемальбумин служат источником печеночного образования билирубина,поскольку гепатоциты воспринимают компоненты гема для образования били­рубина.

Транспорт билирубина В плазме транспортируется как конъюгированный с глюкуро­новой кислотой билирубин, так и неконъюгированный, связанный с альбумином билирубин.При этом конъюгированный с глюкуроно­вой кислотой билирубин характеризуется незначительным сродс­твом с альбумином, как неконъюгированный билирубин.Таким об­разом, незначительная часть билирубинглюкуронида при желтухе не связана с альбумином, она фильтруется через клубочки.Не­большая часть не реабсорбируется в канальцах, а выделяется с мочой и обусловливает наблюдаемую при холестазе билирубину­рию.Также наблюдается очень прочное, вероятно, ковалентное связывание билирубинглюкуронида с альбумином у больных с хо­лестазом с коньюгированной гипербилирубинемией (89).Посколь­ку ковалентно связанный с альбумином билирубинглюкуронид об­наруживает незначительный печеночный и почечный клиренс, объяснение состоит в том, что улучшение желтухи в плазме сопровождается еще повышенными значениями конъюгированного билирубина, в то время как в моче билирубин уже больше не наблюдается. Неконъюгированный билирубин в плазме имеет высокое сродство с местом связывания альбумина, таким образом, не­конъюгированный билирубин в плазме появляется в нерастворен­ном виде.При высокой концентрации билирубина в плазме не­конъюгированный билирубин связывается с альбумином на двух других местах с незначительным сродством.Из мест связывания с меньшим сродством неконъюгированный билирубин может вытес­няться при помощи свободных желчных кислот, из мест связыва­ния с более высоким связыванием посредством медикаментов, таких, как сульфаниламиды, анальгетики и нестероидные анти­ревматики. В печени находящийся в плазме крови связанный с альбуми­ном неконъюгированный билирубин, а также конъюгированный с глюкуроновой кислотой билирубин очень быстро воспринимается синусоидной стороной гепатоцитов.Прием гепатоцитами билиру­бина производится рецепторными белками (5) и соответствует кинетике насыщения по Михаэлису-Ментену.Конгъюгированный би­лирубин, бромсульфалеин, и синдоциановый зеленый также воспринимаются теми же рецепторными белками на синусоидной сто­роне гепатоцитов, в то время как желчные кислоты не конкури­руют с билирубином за поглощение их гепатоцитами. После транспорта билирубина через плазматическую мембра­ну синусоида гепатоцитов билирубин связывается на транспорт­ных белках в цитозоле; также обсуждается вопрос о связанном с мембранами интрагепацитарным переносом билирубина.В гепа­тоцитах билирубин, независимо от того, забирается ли он из плазмы или образуется в гепатоцитах из гемопротеинов, пере­водится при помощи микросомальной билирубин-УДФ-глюкуронилт­рансферазы в билирубиндиглюкуронид.Перед тем, как образую­щийся в гепатоцитах билирубин или воспринятый гепатоцитами билирубин подвергается глюкуронированию,для части билирубина возможен рефлюкс в плазму с возобновленным гепатоцитарным поглощением билирубина.В небольшой части также возможна внутрипеченочная деконъюгация билирубинглюкуронида с рефлюк­сом неконъюгированного билирубина в плазму.На этой основе можно объяснить, почему у больных с холестазом также наблю­даются повышенные концентрации неконъюгированного билирубина в плазме. После конъюгации билирубина глюкуронированный билирубин, вероятно, с помощью переносчика, выделяется через мембрану канальца в желчь (рис.34.13).Бромсульфалеин, индоциановый зеленый и рентгеноконтрастные вещества желчных путей конку­рируют за систему транспорта билирубина в мембране желчного канальца, которая подчиняется кинетике насыщения.В общем, секреция билирубина посредством мембран желчного канальца при переносе билирубина из плазмы в желчь представляет собой шаг, определяющий скорость.Желчные кислоты, напротив, сецер­нируются посредством другой транспортной системы мембран желчный канальцев, в желчь.Поскольку при синдроме Дуби­на-Джонсона имеет место генетический дефект транспортной системы мембраны желчного канальца для секреции конъюгиро­ванного билирубина и бромсульфалеина, то желчные кислоты


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: