Релятивистская космология

Даже если бы достижения Эдвина Хаббла ограничивались убедительным доказательством того, что Вселенная простирается далеко за пределы Млечного Пути и что помимо нашей Галактики существует множество других, он вошел бы в историю. Но ему удалось обессмертить свое имя еще раз, когда он доказал, что большинство галактик удаляются от Земли со скоростями, возрастающими в линейной зависимости от расстояния до них (по крайней мере, именно об этом свидетельствовали новейшие данные тех времен).

Еще в 1912 году Весто Слайфер на основании смещения спектральных линий сделал вывод о том, что спиральные туманности удаляются от нас или, как Андромеда, приближаются к нам с невероятно огромными скоростями. Хотя этот факт и не доказывал непосредственно, что они лежат за пределами нашей Галактики, он стал одним из первых свидетельств того, что Вселенная не ограничивается Млечным Путем.

Именно в этот период истории теория и эксперимент начали объединяться, хотя немногие теоретики имели представление об экспериментальных данных и мало кто из экспериментаторов что-то смыслил в теории. Как мы узнали из главы 6, Эйнштейн добавил в свое гравитационное уравнение новую величину — космологическую постоянную, чтобы ввести понятие гравитационного отталкивания. Он понимал, что оно необходимо для стабилизации Вселенной, ведь в противном случае звезды сталкивались бы друг с другом.

В 1917 году Эйнштейну удалось найти решение своего уравнения, согласно которому Вселенная представляет собой ограниченную в пространстве (замкнутую) статичную четырехмерную гиперсферу{120} (рис. 8.1). Такую модель иногда называют цилиндрической Вселенной, поскольку, если убрать одно из пространственных измерений, такая Вселенная в каждой заданной точке пространства будет представлять собой круг, а с учетом оси времени — пространственно-временной цилиндр.

Стоит отметить, что, хотя модель Эйнштейна формально и была статичной, она была нестабильной, подобно камню на вершине горы. Мельчайшее изменение одного из параметров модели, к примеру космологической постоянной или плотности вещества, приведет к тому, что Вселенная будет расширяться бесконечно или же, наоборот, резко схлопнется.

В том же 1917 году нидерландский астроном Биллем де Ситтер (1872–1934) доказал, что существует еще одно статическое космологическое решение уравнения Эйнштейна, при котором во Вселенной нет материи, но есть только энергия, заключенная в космологической постоянной{121}. Эта модель изображена на рис. 8.2. В решении Эйнштейна гравитационное притяжение массы во Вселенной полностью уравновешивается отталкиванием, заключенным в космологической постоянной. В модели де Ситтера нет ни вещества, ни излучения — только космологическая постоянная, заданная ею положительная пространственная кривая и гравитационное отталкивание, под воздействием которого Вселенная экспоненциально расширяется.

Рис. 8.1. Статическая Вселенная Эйнштейна. Четырехмерная гиперсфера, изображенная в трехмерной системе координат (убрано одно из пространственных измерений), из-за чего она принимает вид цилиндра. У нее нет ни начала, ни конца. Авторская иллюстрация

Разумеется, можно возразить, что расширяющаяся Вселенная никак не может быть статической. Мир де Ситтера называют статическим, потому что он расширяется и всегда будет расширяться равномерно экспоненциально. В этой модели плотность энергии постоянна, поскольку Вселенная расширяется и общая внутренняя энергия со временем увеличивается. Закон сохранения энергии при этом не нарушается, поскольку внутреннее давление, соответствующее космологической постоянной, отрицательно. Если рассматривать эту модель Вселенной как термодинамическую систему, она работает сама на себя.

Рис. 8.2. Вселенная де Ситтера, одно из пространственных измерений убрано. Представляет собой экспоненциально расширяющуюся сферу, не содержащую материи. Космологическая постоянная имеет положительное значение, равное постоянной плотности энергии. Авторская иллюстрация

График, изображенный на рис. 8.2, показывает, что Вселенная де Ситтера не имеет ни начала, ни конца. Линия под верхушкой конуса соответствует бесконечно сужающемуся диаметру конуса, если двигаться в отрицательную сторону по оси времени. Однако, как мы вскоре увидим, позднее было доказано, что инфляционное расширение Вселенной должно было иметь начальную точку, хотя этому моменту мог предшествовать процесс сжатия.

Эйнштейн был недоволен решением де Ситтера. Кроме того, Вселенная не пуста{122}. Де Ситтер предполагал, что его решение, возможно, хорошо работает в некотором приближении в случае, если плотность вещества мала. Как мы вскоре узнаем, он был недалек от истины. Судя по данным измерений плотности энергии и массы, наша Вселенная всего на 26% состоит из вещества и пренебрежимо малого количества излучения. (В главе 10 мы выясним, где и каким образом ученые проводят границу между веществом и излучением.)

 

Вселенная Фридмана

В 1922 году российский физик и математик Александр Фридман доказал, что пространство и время могут заключать в себе не только статическое, но и динамическое многообразие. Я не буду приводить здесь его оригинальную формулировку, а вместо этого изложу современную общепринятую трактовку идеи Фридмана.

В 1929 году американский физик Говард Робертсон написал ключевую работу по этой теме — «Основы релятивистской космологии», где ввел понятие метрики РобертсонаУокера, также полученной Артуром Уокером в 1935 году, которая определяет все возможные линейные элементы четырехмерного пространства-времени для однородной изотропной Вселенной. Он доказал, что решения Эйнштейна и де Ситтера — единственно возможные статические решения и что уравнения Фридмана работают для всех динамических моделей{123}.

Из гравитационного уравнения Эйнштейна Фридман вывел два новых уравнения, описывающих, как Вселенная может развиваться с течением времени{124}. При условии однородности и изотропности Вселенной уравнения Фридмана позволяют рассчитать зависимость от времени величины a(t), называемой в метрике Робертсона — Уокера масштабным фактором, который описывает расширение или сжатие пространства.

Идею Фридмана зачастую наглядно объясняют на примере надувающегося воздушного шара. Нарисуйте две точки на поверхности частично надутого шарика. Если надуть его сильнее, точки отодвинутся друг от друга, если сдуть — сблизятся. В модели Фридмана двухмерная поверхность трехмерного шарика аналогична трехмерному пространству в четырехмерном пространстве-времени Минковского.

Фридман обнаружил три основных возможных сценария космической эволюции, зависящих от значения коэффициента кривизны k, определяющего общую геометрию трехмерного пространства. Если k = 0, пространство плоское, то есть в нем действует евклидова геометрия. Если k = +1, Вселенная замкнута и представляет собой неевклидово пространство с положительной кривизной, подобное поверхности трехмерной сферы. Если k = -1, Вселенная представляет собой открытый трехмерный гиперболоид, кривизна пространства имеет отрицательное значение и пространство напоминает по форме седло. Любой из этих вариантов можно рассмотреть с точки зрения суммы внутренних углов треугольника: 180° для k = 0, больше чем 180° для k = +1, меньше чем 180° для k = -1.

Частные решения уравнений Фридмана зависят от природы вещества во Вселенной, а также значений k и космологической постоянной L.

Эйнштейн не приветствовал появление модели Фридмана. Он считал, что нашел в его работе математическую ошибку. Правда позднее признал, что с математической точки зрения работа корректна, однако «не имеет физического смысла». К сожалению, Фридман не смог продолжить свою работу, поскольку умер в 1925 году в возрасте всего лишь 37 лет. В одной недавней статье говорится, что его вклад в космологию не до конца понят и часто подается превратно{125}. Возможно, Фридман умер, так и не успев осознать его, поскольку он не связывал свои расчеты с астрономическими наблюдениями.

 

Вселенная Леметра

Практически единственным ученым тех лет, которому, похоже, удалось уловить зарождающуюся связь между математической космологией и примечательными данными наблюдений, появившимися в одно и то же время, был бельгийский священник-иезуит и физик Жорж Леметр. В 1927 году Леметр опубликовал статью на французском языке под названием «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей» (Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques){126}. В этой статье он доказал, что из уравнения Эйнштейна следует расширение Вселенной и это объясняет красное смещение галактик. Леметр не цитировал Фридмана и не упоминал другие космологические решения, поскольку его интересовало только описание явлений, наблюдаемых в то время. Формулировка Леметра теперь известна как решение ФридманаЛеметра.

Однако работа Леметра, написанная на французском и опубликованная в малоизвестном журнале, который мало кто читал, несколько лет ожидала своего признания. Сам Леметр не занимался ее продвижением, хотя и послал копию Эддингтону, который ничего не ответил.

Только спустя 6 месяцев после выхода статьи Леметру удалось встретиться с Эйнштейном в брюссельском парке. Эйнштейн приехал на один из исторических Сольвеевских конгрессов, регулярно проходивших в Брюсселе. Пятый конгресс, прошедший в 1927 году, стал легендой, его посетили все сколько-нибудь значимые физики тех времен (Эйнштейн, Бор, Планк, Шрёдингер, Гейзенберг, Борн, Паули, Дирак, Лоренц, Перрен, де Бройль, Резерфорд, Джинс, Пуанкаре, Бриллюэн и др.), и именно там начался великий спор о квантовой механике между Эйнштейном и Бором, продлившийся годы{127}. Семнадцать участников конференции из 29 стали лауреатами Нобелевской премии[11] (астрономы в конгрессе не участвовали).

Итак, Леметр, также бывший в списке приглашенных, встретив Эйнштейна в парке, коротко изложил ему свою модель, на что тот ответил: «Ваши расчеты верны, но вы отвратительно понимаете физику»{128}.

 

Закон Хаббла

Тем временем Хаббл и его талантливый и педантичный ассистент Милтон Хьюмасон (1891–1972) продолжали усердно трудиться. Ни тот ни другой особенно не разбирались в общей теории относительности. В чем они знали толк, так это в наблюдениях за небом. Хьюмасон на тот момент имел восемь классов образования (в итоге он стал доктором наук) и учился проводить астрономические наблюдения после того, как пригонял в обсерваторию обозы снабжения, запряженные мулами. По поручению Хаббла Хьюмасон проводил долгие скучные ночи возле 100-дюймового телескопа, снимая на высокой выдержке спектрограммы плохо различимых галактик{129}. В докомпьютерную эру наблюдателю приходилось сидеть на холоде, в открытой кабине, находящейся высоко, около фокальной точки телескопа, рассматривая изучаемый объект через окуляр и постоянно вручную подстраивая зеркало телескопа в соответствии с вращением Земли таким образом, чтобы объект все время находился в прицеле телескопа.

В 1929 году Хаббл опубликовал в официальном журнале Национальной Академии наук США Proceedings of the National Academy of Sciences эпохальную статью, озаглавленную «Связь между расстоянием и лучевой скоростью внегалактических туманностей» (A Relation between Distanceand Radial Velocity among Extra-Galactic Nebulae){130}. Принцип, предложенный им в этой статье, стал известен как закон Хаббла: лучевая скорость галактики прямо пропорциональна расстоянию до нее. Хьюмасон тоже не остался в стороне. Незадолго до выхода статьи Хаббла он опубликовал свою работу, в которой сообщал о том, что эллиптическая галактика NGC 7619 удаляется от Земли со скоростью 3779 км/с. Эта скорость была в два раза больше, чем самая высокая скорость, измеренная прежде, и примерно в 100 раз больше, чем скорость вращения Земли вокруг Солнца{131}.

В работе Хаббла приведен график (рис. 8.3), отображающий зависимость между лучевыми скоростями галактик и расстояниями до них. Хотя разброс точек велик, явно просматривается тенденция: более удаленные туманности движутся быстрее, чего следует ожидать, если Вселенная расширяется. Это не было большим сюрпризом: другие ученые уже подмечали такую закономерность. Однако у Хаббла имелись убедительные доказательства. Что касается выстраивания точек по прямой линии, на рисунке это видно плохо, но на основании имевшихся данных эта тенденция четко прослеживалась.

Подписи к рис. 8.3 взяты непосредственно из работы Хаббла. Неправильно указана единица измерения на оси скоростей — вместо «км» должно быть «км/с». Расстояния даны в парсеках, 1 парсек = = 3,26 светового года[12].

Рис. 8.3. Зависимость «скорость — расстояние» для внегалактических туманностей. На графике отображена связь между лучевыми скоростями с поправкой на движение Солнца и расстояниями до них, оцененными на основании светимости отдельных звезд или туманности в целом. Черные точки и сплошная линия отображают решение для движения Солнца с использованием отдельных туманностей; белые точки и пунктирная линия представляют решение с использованием объединенных скоплений туманностей; крестик обозначает среднюю скорость, соответствующую среднему расстоянию до 22 туманностей, расстояние до каждой из которых в отдельности оценить нельзя

В то время как большая часть скоростей, изображенных на графике, положительны, несколько отрицательных значений свидетельствуют о том, что некоторые более близкие галактики, такие как Андромеда, движутся по направлению к нам. Большинство расстояний до галактик в примере Хаббла определены не по цефеидам, которые были слишком тусклыми для этого, а по наиболее ярким звездам либо по общей светимости галактики.

В те дни не практиковался такой педантичный подход к ссылкам в научных работах, как сейчас. На самом деле некоторые из них по современным стандартам выглядели бы небрежными и ненаучными. Так что Хаббл, не указавший в своей работе источники, ничем в этом отношении не выделялся. Из-за этого возникает впечатление — и об этом пишут во многих популярных книгах по астрономии, — что все данные были получены непосредственно Хабблом и Хьюмасоном с помощью 100-дюймового телескопа, установленного в «Маунт-Вилсон». На деле же только четыре точки взяты из наблюдений Хьюмасона в обсерватории «Маунт-Вилсон». Большая часть данных, использованных в работе Хаббла, взята у Слайфера, проводившего наблюдения в менее мощный телескоп обсерватории Лоуэлла{132}. Тем не менее к 1931 году Хаббл и Хьюмасон добавили к ним данные наблюдений еще 40 галактик.

Угловой коэффициент отношения скорости v к расстоянию r, К = v/r, называется постоянной Хаббла, теперь ее принято обозначать буквой Н. Таким образом, закон Хаббла записывается так: v = Hr. Хаббл приводит два значения, основанных на результатах двух различных анализов данных: К = 500 км/с на 1 млн. парсеков для отдельной туманности и К = 530 км/с на 1 млн. парсеков — для туманностей, объединенных в группу.

При этих значениях К галактика NGC 7619, описанная Хьюмасоном, должна находиться на расстоянии 20 млн. световых лет от нас. Как мы вскоре увидим, значение Н, полученное Хабблом, было завышено в семь раз. По расчетам Хаббла, галактика Хьюмасона удалена от Земли на 140 млн. световых лет.

Заметьте, что Н фактически выражает скорость расширения Вселенной, которая не должна быть одинаковой на протяжении всего срока ее жизни, и, как мы знаем теперь, эта величина действительно не постоянна. Итак, я буду, придерживаясь традиции, определять значение Н, ныне обозначаемое Н0, как постоянную Хаббла. А более общий показатель расширения вселенной Н будем определять как параметр Хаббла.

 

Леметра заметили

В своей работе 1927 года, опубликованной на два года раньше статьи Хаббла, Леметр оценил К (или Н) в 625 км/с на 1 млн. парсеков, пользуясь, вероятно, той же выборкой, которая была у Хаббла{133}. В этой работе Леметр прямо утверждает: «Удаляющиеся галактики — это космическое проявление расширения Вселенной».

На статью Леметра начали обращать внимание в 1931 году, когда благодаря помощи Эддингтона, который наряду с Шепли был одним из наставников Леметра и наконец-то обратил на его работу внимание, появился ее перевод на английский язык{134}. Однако Леметр не включил в английскую версию статьи свои расчеты постоянной Хаббла{135}. В любом случае, даже во французской версии работы Леметр не указал на критически значимую зависимость скорости от расстояния, которая действительно необходима, чтобы понять этот эффект.

Тем не менее космологи оценили значимость работы Леметра. Эддингтон отмечал, что статическая Вселенная Эйнштейна зависела от космологической постоянной, имеющей строго определенное значение, причем малейшее изменение привело бы к расширению или сжатию Вселенной. Эддингтон писал де Ситтеру, что Леметр предложил «блестящее решение» проблемы и тот согласился с этим утверждением.

Наконец и Эйнштейн изменил свое мнение, а к 1933 году его примеру последовало астрономическое сообщество. В итоге Эйнштейн отказался от космологической постоянной, назвав ее своей «самой большой ошибкой». Он и не подозревал, что она (или что-то подобное ей) окажется носителем трех четвертей всей энергии Вселенной. Ни де Ситтер, ни Леметр не исключили космологическую постоянную из своих моделей, хотя пройдут годы, прежде чем потребность в ней ощутит большая часть космологов.

Хаббл и Хьюмасон продолжали измерять красное смещение галактик. Предел скорости, доступный их спектрографу, оказался равным 40 000 км/с — на такой скорости до Луны можно добраться за 10 с. Хаббл особенно не увлекался теорией, и хотя его принято считать первооткрывателем расширения Вселенной, он так и не признал эту теорию полностью, будучи осторожным исследователем, оставляющим простор для альтернативных версий, в то время как Шепли искренне проникся этой идеей{136}.

Сегодня нет сомнений в том, что Леметр был первым человеком, связавшим красное смещение галактик с расширением Вселенной. Однако Леметр не был экспериментатором, а теории в науке не имеют смысла без подтверждающих их данных. Роль Хаббла и помогавшего ему Хьюмасона заключалась в том, чтобы представить убедительные результаты наблюдений.

В 1935 году Хаббл читал в Йельском университете Силлимановские лекции, запись которых можно найти в его ставшей классической книге «Мир туманностей» (The Realm of the Nebulae){137}. Силлимановские лекции были учреждены, чтобы «иллюстрировать присутствие и мудрость Бога, проявляющиеся в природе и духовном мире».

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: