Основные функции анализаторов

ТЕМА: ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ.

 

Занятие 1. Общие свойства анализаторов.

 

Вопросы для самоподготовки.

1. Значение сенсорных систем. Учение И.П. Павлова об анализаторах. Общие принципы строения анализаторов

2. Функции анализаторов: обнаружение сигналов (Рецепторы Свойства рецепторов)

3. Функции анализаторов: различение сигналов Абсолютные и дифференциальные пороги различения.

4. Функции анализаторов: передача и преобразование сигнала. (Проводниковый отдел анализаторов. Специфическая и неспецифическая афферентная системы. Участие подкорковых образований в проведении и переработке афферентных возбуждений.)

5. Кодирование информации в анализаторе

6. Функции анализаторов: детектирование сигнала и опознание образа (Корковый отдел анализаторов (И.П. Павлов). Процессы высшего коркового анализа афферентных возбуждений. Взаимосвязь анализаторов.)

 

Базовая информация

 

Организм и окружающая его среда представляют собой единство, поэтому в определение организма должна входить и среда, влияющая на него. Эта мысль И. М. Сеченова все более раскрывается инаполняется глубоким содержанием с каждым новым этапом развития физиологии, с каждой новой ступенью нашего познания процессов взаимодействия организма и среды. Именно правильное восприятие изменений внешней среды обеспечивает формирование адекватной ответной реакции организма, обеспечивающей его выживание. Поэтому организм должен постоянно получать информацию, как об изменениях внешней среды, так и о состоянии внутренних органов, обеспечивающих адекватное реагирование на эти изменения. Такая ситуация неизбежно приводит к развитию у животных организмов специализированных систем восприятия позволяющих им вести активный образ жизни. Активность выражается в движении, деятельности, поведенческих реакциях, обеспечивающих не только приспособление организма к условиям среды.

Это не просто «уравновешивание», т. е. не просто пассивные приспособительные реакции, возникающие с целью компенсировать влияние среды. Поведение организма активно. Оно нередко направлено на преодоление среды, что достигается иногда ценой значительных нарушений гомеостаза. Организм осуществляет активную разведку, поиск в целях изучения иной среды обитания, перехода к новым условиям существования и т. д. Такая деятельность необходима для накопления жизненного опыта, повышения жизнестойкости вида, улучшения возможности выживания.

У человека подобные формы поведения достигли наивысшего развития. Они проявляются в трудовой деятельности, цель которой – изменить окружающую среду и приспособить ее к своим потребностям. Его деятельность протекает в условиях не только природной, но и социальной среды – в человеческом обществе.

Человеку необходимы постоянное получение информации о состоянии и изменениях внешней среды, переработка этой информации и на основе ее составление планов и программ предстоящей деятельности.

Правильное отражение в нашем сознании реально существующего мира является результатом совместной работы высокоорганизованной материи мозга и органов чувств, воспринимающих раздражения окружающей среды.

Познание окружающего мира всегда начинается с ощущения, которое позволяет распознать отдельные свойства и качества предметов. Однако в мире нет обособленных, изолированных свойств и качеств. Ими наделены определенные предметы и явления. Вследствие этого на базе ощущения формируется восприятие, которое дает возможность познать предмет или явление в целом, в единстве всех его свойств. На базе ощущений и восприятий возникает и развивается представление. Представление расширяет возможности познания человеком окружающего мира. Оно позволяет представить образ предметов и явлений материального мира, в прошлом воздействовавших на органы чувств человека.

           Однако ощущения, восприятия и представления отражают только внешние стороны и связи отдельных предметов и явлений окружающего мира. Познание сущности явлений, закономерностей процессов осуществляется за счет абстрактного мышления. Абстрактное мышление посредством понятий, суждений и умозаключений позволяет вскрыть сущность явлений, их внутренние связи.

Естественнонаучным обоснованием теории познания является учение И. П. Павлова об анализаторах. И. П. Павлов своими исследованиями показал материальные основы, физиологические механизмы, при помощи которых осуществляется процесс отражения в головном мозге. И. П. Павлов установил, что ширина и глубина отражения человеком материального мира находится в неразрывной связи со свойством нервной системы воспринимать и перерабатывать многочисленную информацию, поступающую из окружающего мира в головной мозг. По И. П. Павлову, конкретными физиологическими механизмами, которые осуществляют познавательную деятельность человека, являются анализаторы. Свое учение об анализаторах И. П. Павлов создавал на основе единства центра и периферии. Головной мозг и рецепторы И. П. Павлов рассматривал как единую сложно организованную динамическую систему.

Анализатор - это совокупность трех отделов нервной системы: периферического, проводникового и центрального.

Периферический отдел анализатора представлен различными рецепторами, воспринимающими раздражения окружающей среды. В рецепторах энергия раздражения преобразуется (трансформируется) в энергию нервного импульса.

Проводниковый отдел представлен нервными путями, проводящими нервные импульсы в центральный отдел анализатора.

Возбуждение, возникшее в каком-либо рецепторе, проводится в высшие отделы центральной нервной системы несколькими путями. Во-первых, через так называемый специфический путь, который включает в себя:

· рецептор;

· первый чувствительный нейрон, расположенный всегда вне центральной нервной системы – в межпозвоночных спинномозговых ганглиях, в полулунном, или Гассеровом, яремном, спиральном и других ганглиях черепномозговых нервов;

· второй нейрон – в спинном, продолговатом или среднем мозге; 

· третий нейрон – в зрительных буграх,

· четвертый нейрон – в проекционной зоне данного анализатора коры больших полушарий.

Кроме этого, в среднем, спинном и продолговатом мозге происходит переключение на пути, ведущие в другие отделы головного мозга, в том числе и мозжечок, ретикулярную формацию и т. д. Из ретикулярной же формации возбуждение может направляться по так называемым неспецифическим путям во все отделы коры больших полушарий.

Центральный или мозговой отдел анализатора - это определенные области коры головного мозга. В клетках коры головного мозга нервные импульсы приобретают новые качества. Они являются основой для возникновения ощущения, элементарного психического акта, правильно отражающего окружающую действительность. На основе ощущений возникают более сложные психические акты восприятие, представление и абстрактное мышление.

           Общие принципы строения анализаторов. Всем анализаторным системам высших позвоночных животных и человека свойственны следующие основные принципы строения:

1. Многослойность, т. е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний – с нейронами ассоциативных отделов коры полушарий большого мозга. Между собой слои связаны проводящими путями, образованными аксонам их нейронов. Такое построение анализаторов обеспечивает возможность специализации разных слоев по переработке отдельных видов информации, что позволяет организму более быстро реагировать на простые сигналы, анализируемые уже на промежуточных уровнях. Кроме того, это создает условия для тонкого регулирования этих процессов путем влияний, исходящих из более высоких слоев данной системы и других отделов мозга.

2. Многоканальность анализаторных систем означает наличие в каждом из их слоев множества (от нескольких десятки тысяч до нескольких миллионов) нервных элементов, связанных со множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам более высокого уровня. Наличие множества каналов обеспечивает анализаторам большую надежность и тонкость анализа.

3. Наличие, так называемых сенсорных «воронок» - неодинакового числа элементов в соседних слоях. «Воронки» практически всегда расширяющиеся, но могут быть и суживающимися (сетчатка).

Физиологический смысл явления суживающихся воронок сводится к уменьшению количества информации, передаваемой в мозг, а в расширяющихся «воронках» – к обеспечению более дробного и сложного анализа разных признаков сигналов.

4. Дифференциация анализаторов по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, состоящих обычно из того или иного числа слоев нервных элементов. Отдел – более крупное морфофункциональное образование, чем слой элементов. Каждый такой отдел (например, обонятельные луковицы, кохлеарные ядра или коленчатые тела) имеет определенную функцию. Различают обычно рецепторный, или периферический, отдел анализаторной системы, один или чаще несколько промежуточных отделов и корковый отдел анализатора.

Дифференциация анализаторных систем по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.

Основные функции анализаторов.

Анализаторы выполняют большое количество функций или операций с сигналами. Среди них важнейшие:

· обнаружение сигналов.

· различение сигналов.

· передача и преобразование сигналов.

· кодирование поступающей информации.

· детектирование тех или иных признаков сигналов.

· опознание образов.

 

Обнаружение и различение сигналов обеспечивается, прежде всего, рецепторами, а детектирование и опознание сигналов высшими корковыми уровнями анализаторов. Передача, преобразование и кодирование сигналов свойственны всем слоям анализаторов.

1. Обнаружение сигналов начинается в рецепторах – специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. Классификация рецепторов очень разнообразна и отражает, прежде всего, способности их к восприятию различных типов сигналов.

Так, например, все рецепторы разделяют на две большие группы: внешние, или экстерорецепторы, и внутренние, или интерорецепторы. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные рецепторы, к интероцепторам – висцерорецепторы, сигнализирующие о состоянии внутренних органов, проириоцепторы - рецепторы опорно-двигательного аппарата, определяющие длину мышц, натяжение сухожилий, углы в суставах и другие параметры положения и перемещения тела, а также рецепторы вестибулярного аппарата.

Различают соматосенсорные и специальные сенсорные рецепторы. Соматосенсорные рецепторы - это рецепторы прикосновения, давления, температуры, боли, проприоцепторы мышц и суставов. Специальные сенсорные рецепторы (или органы чувств): зрительные, слуховые, обонятельные, вкусовые и вестибулярные. Соматосенсорные рецепторы туловища и конечностей иннервируются спинномозговыми нервами. Соматосенсорные рецепторы головы иннервируются черепно-мозговыми нервами.

По уровню специфичности рецепторы делят на моно- и полимодальные. Мономодальными называются рецепторы, специализированные к восприятию одного вида раздражителей (например, зрительные и слуховые). К полимодальным относятся рецепторы, возбуждающиеся при действии различных раздражителей (например, болевые).

В зависимости от способа взаимодействия рецептора с раздражителем различают контактные (прямой контакт с раздражителем) и дистантные (воспринимающие раздражитель на расстоянии) рецепторы.

Различают также первичночувствующие и вторичночувствующие рецепторы. В первичночувствующих рецепторах (обонятельные, рецепторы осязания, давления) восприятие и преобразование энергии раздражения в энергию нервного возбуждения происходит у них в самом чувствительном нейроне, т.е. они сами генерируют нервный импульс, который по чувствительному нерву рецепторной клетки направляется в высшие отделы анализатора. Вторичночувствующие рецепторы (зрительные, слуховые) под влиянием внешних раздражителей сами деполяризуются с выделением химического медиатора. Медиатор действует на синапсы чувствительных нейронов, вызывая формирование генераторного потенциала. То есть первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы человека могут быть разделены на:

механорецепторы, к которым относятся рецепторы слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы;

хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы;

фоторецепторы сетчатки глаза;

терморецепторы кожи и внутренних органов, а также центральные термочувствительные нейроны;

болевые (ноцицептивные) рецепторы, кроме которых болевые раздражения могут восприниматься и другими рецепторами.

По своим основным свойствам рецепторы делятся также на быстро- и мелленноадаптирующиеся, низко- и высокопороговые, и т. д.

В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ошущений, возникающих при их раздражении. Согласно данной классификации у человека различают: зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибулорецепгоры) и рецепторы боли.

Механизмы возбуждения рецепторов. Рецепторы преобразуют энергию стимула в энергию проницаемости своей мембраны. Этот процесс называют трансдукцией. При действии стимула на рецепторную клетку происходят изменения пространственной конфигурации белковых рецепторных молекул, встроенных в ее мембраны. Это приводит к изменению проницаемости мембраны для определенных ионов (чаще всего натрия) и возникновению ионного тока, генерирующего так называемый рецепторный потенциал. Поскольку рецепторный потенциал генерирует в афферентных нервных волокнах потенциалы действия, его называют также генераторным.

В первичночувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия – нервные импульсы. Во вторичночувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки, который, воздействуя на постсинаптическую мембрану чувствительного нейрона, вызывает ее деполяризацию (постсинаптический потенциал – ПСП). Постсинаптический потенциал первого чувствительного нейрона называют генераторным потенциалом и он приводит к генерации импульсного ответа.В первичночувствующих рецепторах рецепторный и генераторный потенциалы, обладающие свойствами локального ответа, это одно и то же.

Большая часть рецепторов обладает способностью к так называемой, фоновой импульсации (спонтанно выделяет медиатор) в отсутствие всяких раздражений. Это позволяет передавать сведения о сигнале не только в виде учащения, но и в виде урежения потока импульсов. В то же время, наличие таких разрядов приводит к обнаружению сигналов на фоне «шумов». Под «шумами» понимают не связанные с внешним раздражением импульсы, возникающие в рецепторах и нейронах в результате спонтанного выделения квантов медиатора, а также множественных возбудительных взаимодействий между нейронами.

Свойства рецепторов. Наиболее общими свойствами рецепторов являются возбудимость, лабильность и адаптация. Для них характерны и главные меры измерения: порог раздражения, хронаксия и адеквата.

Раздражители подразделяют на адекватные и неадекватные. Адекватность или неадекватность раздражителя определяется не собственными его качествами, а специфичностью рецепторного аппарата. Для зрительного рецептора адекватным раздражителем является свет. В то же время свет - неадекватный раздражитель для слухового или тактильного рецептора.

Чувствительность рецепторных элементов к адекватным раздражителям предельно высока. Так, обонятельные рецепторы способны возбудиться при действии одиночных молекул пахучих веществ, фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, а волосковые клетки спирального (кортиева) органа реагируют на смещения базиллярной мембраны порядка 1 х 10 11 М (0,1 А0). Более высокая чувствительность в последнем случае также невозможна, так как ухо при этом слышало бы уже в виде постоянного шума тепловое (броуновское) движение молекул.

Меру адекватности раздражителя применяют для оценки возбудимости рецепторов. Чем более адекватен раздражитель рецептору, тем меньшая его сила необходима для возбуждения рецептора, Величина энергии раздражителя в 1 реобазу является мерой его адекватности рецептору - адекватой. Для определения адекваты раздражитель дозируют по силе и пространственно-временным характеристикам.

Ясно, что чувствительность анализатора в целом не может быть выше чувствительности наиболее возбудимых из его рецепторов. Однако в обнаружении сигналов помимо рецепторов участвуют чувствительные нейроны каждого нервного слоя, которые различаются между собой по возбудимости. Эти различия очень велики: так, зрительные нейроны в разных отделах анализатора различаются по световой чувствительности в 107 раз. Поэтому чувствительность зрительного анализатора в целом зависит и от того, что на все более высоких уровнях системы увеличивается пропорция высокочувствительных нейронов. Это способствует надежному обнаружению системой слабых световых сигналов.

Адаптация рецепторов к действию раздражителей зависит как от особенностей их строения, так и от силы раздражающего агента. Чем сильнее раздражитель, тем быстрее наступает адаптация. Быстро адаптирующимися рецепторами является большинство кожных рецепторов. Ощущение давления одежды на кожу мы практически не чувствуем. Внутренние рецепторы (баро- и хеморецепторы) адаптируются медленно что способствует более тонкой саморегуляции и сохранению гомеостаза.

Представление об адекватности раздражителей и их высокой раздражающей силе для специфических рецепторов дало основание М. Мюллеру сформулировать закон о специфической энергии органов чувств. Согласно этому закону, рецепторы отвечают на внешние раздражения только определенной формой реакции, зависящей от специфического строения - «специфической энергии» органов чувств. Иначе говоря, органы чувств формируют ощущение вне зависимости от вида раздражителя, в соответствии с заложенной в них энергией.

2. Различение сигналов.

По традиции, у ощущений различают четыре основных характеристики – интенсивность, качественный тип, временную длительность и пространственную протяженность. Для некоторых сенсорных модальностей, например слуха или обоняния, в последнем случае говорят о местоположении, т.е. способности обнаружить (локализовать) источник звука или запаха. В случае вкуса, например, пространственной характеристики вообще нет.

Прежде всего, рассмотрим первые два из перечисленных параметров. Начнем с качественного типа. Дело в том, что ощущения принципиально различны по своей природе. ««Видение» – это нечто совершенно иное, нежели «слышание». Зрение, слух, обоняние, вкус и т. д. называют сенсорными модальностями. Каждая из них включает различные, качественные типы ощущений. Красный цвет – один тип зрительных ощущений, зеленый – другой.

Именно для качественной характеристики ощущений Иоганнес Мюллер (1837) сформулировал закон специфических сенсорных энергий, упоминавшийся выше: ощущение зависит не от стимула, а от раздражаемого им органа.

Сенсорные ощущения нельзя сопоставлять друг с другом с помощью прямых измерений. Однако на уровне качественных типов ощущений такие измерения вполне возможны. Если медленно изменять частоту тона, будет обнаружен некоторый порог, т.е. различие в частотах, достаточное для заметного на слух перехода к другому качеству звучания. Точно так же, меняя частоту электромагнитного излучения, можно определить порог воспринимаемого изменения цвета.

Интенсивность ощущений наиболее подробно изучалась психофизическимиметодами. Интерес к тому, можно ли измерить эту характеристику, привел Г. Фехнера к разработке примерно в 1850 г. первой научной методики количественного описания субъективного опыта. Он же вывел первый психофизический закон, устанавливающий количественную связь между физической интенсивностью (j) и силой ощущения (Y). До этого господствовала доктрина Декарта (1596–1650), отрицавшего возможность измерений в субъективной сфере («res cogitans»). Центральным понятием психофизики стало понятие сенсорного порога.

Абсолютный порог определяется как наименьший по интенсивности стимул, способный вызвать определенное ощущение. Некоторые авторы обычно ограничивают смысл этого термина, понимая под ним наиболее низкий порог, достижимый при оптимальных условиях стимуляции и адаптации. Например, пороговые значения для слуха зависят от частоты звука, а для зрения – от времени адаптации.

Однако ощущения можно характеризовать не только по абсолютной чувствительности анализаторов. Важной характеристикой того, как они анализируют сигналы, является их способность обнаруживать изменения интенсивности, временных показателей или пространственных признаков стимула. Поэтому, в надпороговом диапазоне определяют еще один вид порога – «едва заметное различие». Это величина, на которую один стимул должен отличаться от другого, чтобы их разница воспринималась человеком. Это минимальное различие и есть дифференциальный порог или порог различения (или разностный порог, если речь идет о сравнении интенсивностей).

Подход к оценке дифференциальных порогов был предложен Э Вебером, который в 1834 г. сформулировал следующий закон: ощущаемый прирост раздражения (порог различения) должен превышать раздражение, действовавшее ранее, на определенную долю. Другими словами, минимальное различимое изменение интенсивности стимуляции составляет постоянную долю ее исходной интенсивности. Эта зависимость, известная как закон Вебера, выражается формулой: 

                                            DI/I=const,

где I – раздражение, DI – его ощущаемый прирост (порог различения), const – постоянная величина (константа). Данное правило выполняется в широком их диапазоне для многих сенсорных модальностей. Однако по мере приближения к абсолютному порогу коэффициент Вебера (DI/I)   обычно растет. Коэффициент Вебера – полезная мера относительной чувствительности сенсорных систем. Нельзя математически сравнить чувствительность глаза к силе света с чувствительностью уха к уровню звукового давления, но можно сопоставить между собой безразмерные коэффициенты Вебера для этих модальностей. В подобных опытах глаз несколько лучше, чем ухо, улавливает разницу адекватных стимулов по интенсивности.

Пространственное различение сигналов основано на различиях в пространственном распределении возбуждения в слое рецепторов и в нервных слоях. Так, если какие-то два раздражителя возбудили два соседних рецептора, то различение этих двух раздражений невозможно, а они будут восприняты как единое целое. Для пространственного различения двух стимулов необходимо, чтобы между возбуждаемыми ими рецепторами находился хотя бы один невозбужденный рецепторный элемент. Подобные эффекты возникают при восприятии, например, слуховых раздражений и позволяют различать звуки различные по высоте.

Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный последующим стимулом, не попадал в рефрактерный период от предыдущего раздражения.

3. Передача и преобразование. После преобразования в рецепторах энергии физического или химического раздражителя в процесс нервного возбуждения начинается цепь процессов по преобразованию и передаче полученного сигнала. Бель их – донести до высших отделов мозга наиболее важную информацию о раздражителе и притом в форме, наиболее удобной для надежного и быстрого его анализа.

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований сигналов можно выделить изменение их масштаба в целом или искажение соотношения разных пространственных частей. Так, в зрительной и соматосенсорной системах на корковом уровне происходит значительное искажение геометрических пропорций представительства отдельных частей тела или частей поля зрения. В зрительной коре резко расширено представительство центральной ямки сетчатки при относительной редукции периферии поля зрения («циклопический глаз»).

4. Кодирование поступающей информации. Кодированием называют процесс преобразования информации в условную форму – код, совершаемый по определенным правилам.

В анализаторных системах позвоночных животных сигналы кодируются двоичным кодом, то есть наличием или отсутствием залпа импульсов в тот или иной момент времени в том или ином нейроне.

Информация о ряздражениях и их параметрах передается у позвоночных животных в виде отдельных групп или «пачек» импульсов («залпов импульсов»). Согласно закона «все или ничего», все параметры одиночного импульса стандартны (его амплитуда, длительность, форма), но число импульсов в пачке, их частота, длительность пачек и интервалов между ними, а также распределение в пачке отдельных импульсов различны, и зависят от характеристик стимула. Возможно так же кодирование поступающей информации изменением числа волокон, по которым она параллельно передается, а так же местом возбуждения в нейронном слое.

Кодирование в анализаторах имеет ряд особенностей. Во-первых: начатое в рецепторе кодирование, которое продолжается на всех уровнях анализатора, ни на одном из уровней не приводит к восстановлению первичной формы сигнала т.е. к декодированию.

Вторая принципиальная особенность нервного кодирования – множественность и перекрытие кодов. Это означает, что для одного и того же признака сигнала (например, его интенсивности) в анализаторе одновременно используется несколько различных вариантов нервных кодов: частота импульсации в отдельных нейронных каналах, число возбужденных элементов и их локализация в нервном слое. Удельный вес каждого из этих кодов может изменяться на разных уровнях анализатора, но их параллельность сохраняется.

Еще одна особенность кодирования – это «зашумленность» большинства сенсорных кодов, т.е. добавление к импульсам, несущим информацию, фоновой импульсации. Это затрудняет анализ и восприятие информации.

5. Детектирование сигналов специальный вид избирательного анализа отдельных признаков раздражителя и их конкретного биологического значения. Осуществляют такой анализ специализированные нейроны-детекторы, которые благодаря свойствам своих связей способны реагировать лишь на строго определенные параметры стимула.

Корковые зрительные детекторы реагируют лишь на одно из множества положений или наклонов светлой или темной полоски, расположенной в определенной части поля зрения. При другом положении той же полоски ответят другие нейроны. Совокупность нейронов, оценивающих разные стороны одного и того же признака (например, все возможные ориентации изображений), составляет систему детекции этого признака.

Общим в распределении детекторов является иерархический принцип, согласно которому на более низких уровнях локализуются детекторы более простых признаков, обеспечивающие простой анализ. В высших отделах анализатора, как правило, сконцентрированы детекторы более сложных признаков.

6. Опознание образов конечная и наиболее сложная операция анализатора. Она заключается в классификации образа, отнесении его к тому или иному классу объектов, с которыми ранее встречался организм. Это происходит на основе всей предыдущей обработки афферентного сигнала, после расщепления его нейронами-детекторами на отдельные признаки и их раздельного параллельного анализа. Задача операции опознания может быть сведена к построению мозгом «модели раздражителя» и ее выделению из множества других подобных моделей. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. Полагают, что для этого существуют специфические пространственно связанные наборы нейронов (нейронные ансамбли – высшие детекторы), возбуждение которых означает для мозга появление того или иного образа. Именно в результате такого опознания мы осознаем, какого человека видим перед собой, чей голос слышим, какой запах чувствуем и т.д.

Опознание происходит независимо от изменчивости сигнала. Отсюда следует, что на каких-то высших уровнях анализатора организуется независимое от этих изменений признаков отражение сигнала – сенсорный образ. Это совокупность сигналов, отображаемых в сходном пространственно-временном распределении процессов возбуждения и торможения навысшем уровне анализатора.

 

 

ТЕМА: ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: