double arrow

Языкоглоточный (IX) нерв (п. glossopharingeus)



1

Функции дендритов.

Хотелось бы отметить, что основные трудности, с которыми сталкивается исследователь при изучении функции дендритов, - это отсутствие сведений о свойствах мембраны дендрита (в отличие от мембраны тела нейрона) из-за невозможности введения микроэлектрода внутрь дендрита.

Оценивая в целом геометрию дендритов, распределение синапсов и особое строение цитоплазмы в местах дендритных ветвлений, можно говорить о специальных локусах нейрона со своей собственной функцией. Самое простое, что можно было бы приписать дендритным площадкам в местах ветвления - это трофическая функция.

Из всего вышесказанного следует, что цитоплазма дендритов содержит много ультраструктурных компонентов , способных обеспечивать их важные функции. В дендрите есть определенные локусы, где его работа имеет свои особенности.

Главное назначение многочисленных дендритных разветвлений нервной клетки - это обеспечить взаимосвязь с другими нейронами. В коре головного мозга млекопитающих большая доля аксодендрических связей приходится на контакты с особыми специализированными выростами дендритов – дендрическими шипиками. Дендритические шипики являются филогенетически самыми молодыми образованиями в нервной системе. В онтогенезе они созревают значительно позже других нервных структур и представляют собой наиболее пластичный аппарат нервной клетки.




Как правило, дендрический шипик имеет в коре мозга млекопитающих характерную форму. (рис. 2). От основного дендритного ствола отходит сравнительно узкая ножка, которая заканчивается расширением - головкой. Вероятно такая форма дендритического придатка (наличие головки) связана, с одной стороны с увеличением площади синаптического контакта с аксонным окончанием, с другой служит для размещения внутри шипика специализированных органел, в частности шипикового аппарата, который имеется только в дендритических шипиках коры мозга млекопитающих. В этой связи кажется уместной аналогия с формой синаптического аксонного окончания, когда

тонкое претерминальное волокно образует расширение. Это расширение (синаптическая бляшка) образует обширный контакт с иннервируемым субстратом и содержит внутри большой набор ультраструктурных компонентов (синаптические пузырьки, митохондрии, нейрофиламенты, гранулы гликогена).



Существует гипотеза (которую, в частности, разделяет и развивает нобелевский лаурят Ф. Крик) о том, что геометрия шипиков может меняться в зависимости от функционального состояния мозга. При этом узкая шейка шипика может расширяться, а сам шипик уплощается, в результате чего увеличивается эффективность аксо-шипикового контакта.

Если форма и размеры дендрических шипиков в коре мозга млекопитающих могут несколько варьировать, то наиболее постоянно в них наличие специфического шипикового аппарата. Он представляет собой комплекс взаимосвязанных канальцев (цистерн), расположенных, как правило, в головке шипика. Вероятно, это органелла связана с очень важными функциями, присущими филогенетически самым молодым мозговым образованиям, так как шипиковый аппарат встречается в основном в коре головного мозга, и только у высших животных .

Несмотря ни на что шипик является производным дендрита, в нем отсутствуют нейрофиламенты и дендритические трубочки, его цитоплазма содержит грубо или тонко гранулированный матрикс . Еще одной характерной чертой шипика в коре мозга является обязательное присутствие на них синаптических контактов с аксонными окончаниями. Цитоплазма шипика имеет специальные компоненты, которые отличают его от дендритных стволов. Можно отметить своеобразную триаду в цитоплазме шипика: субсинаптическая специализация активных зон - шипиковый аппарат - митохондрии. Учитывая многообразие сложных и важных функций, которые выполняют митохондрии, можно ожидать также сложных функциональных проявлений в «триадах» при синаптической передаче. Можно говорить о том, что цитоплазма дендритического шипика и шипиковый аппарат могут иметь непосредственное отношение к синаптической функции.

Дендритические шипики и концы дендритов также очень чувствительны к действию экстремальных факторов. При любом виде отравления (например, алкогольном, гипоксическом, тяжелыми металлами - свинцом, ртутью и т.д.) меняется количество выявленных шипиков на дендритах клеток коры больших полушарий. По всей вероятности, шипики при этом не исчезают, но у них нарушаются цитоплазматические компоненты, и они хуже импрегнируются солями тяжелых металлов. Так как шипики - один из структурных компонентов обеспечения межнейрональных контактов, то неполадки в них приводят к серьезным нарушениям функции мозга.

В некоторых случаях при кратковременном действии экстремального фактора может наступить на первый взгляд пара дорсальная ситуация, когда количество выявленных шипиков на дендритах клеток мозга не уменьшается, а увеличивается . Так, это наблюдается при экспериментальной ишемии мозга в начальный ее период. Параллельно с увеличением числа выявленных шипиков может улучшаться функциональное состояние мозга. В данном случае гипоксия является фактором, который способствует усилению метаболизма в нервной ткани, лучшей реализации резервов, не используемых в обычной обстановке, и быстрому сгоранию шлаков, накопленных в организме. Ультраструктурно это проявляется в более интенсивной проработке цитоплазмы шипиков, разрастании и увеличении цистерн шипикового аппарата. Вероятно, этот феномен положительного действия гипоксии наблюдается тогда, когда человек, испытывая большие физические нагрузки в условиях гипоксии, покоряет горные вершины. Эти трудности компенсируются затем более интенсивной продуктивной работой, как мозга, так и других органов.

 

 

10. Особенности строения и функции аксонов, аксонный транспорт.

Аксон (греч. ἀξον — ось) — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

Нейрон состоит из одного аксона, тела и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные, мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передается назад к дендритам [1]. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС).

В месте соединения аксона с телом нейрона у наиболее крупных пирамидных клеток 5-ого слоя коры находится аксонный холмик. Ранее предполагалось, что здесь происходит преобразование постсинаптического потенциала нейрона в нервные импульсы, но экспериментальные данные это не подтвердили. Регистрация электрических потенциалов выявила, что нервный импульс генерируется в самом аксоне, а именно в начальном сегменте на расстоянии ~50 мкм от тела нейрона [2]. Для генерации потенциала действия в начальном сегменте аксона требуется повышенная концентрация натриевых каналов (до ста раз по сравнению с телом нейрона[3]).

Питание и рост аксона зависят от тела нейрона: при перерезке аксона его периферическая часть отмирает, а центральная сохраняет жизнеспособность. При диаметре в несколько микронов длина аксона может достигать у крупных животных 1 метра и более (например, аксоны, идущие от нейронов спинного мозга в конечности). У многих животных (кальмаров, рыб, кольчатых червей, форонид, ракообразных) встречаются гигантские аксоны толщиной в сотни мкм (у кальмаров — до 2—3 мм). Обычно такие аксоны отвечают за проведение сигналов к мышцам. обеспечивающим «реакцию бегства» (втягивание в норку, быстрое плавание и др.). При прочих равных условиях с увеличением диаметра аксона увеличивается скорость проведения по нему нервных импульсов.

В протоплазме аксона — аксоплазме — имеются тончайшие волоконца — нейрофибриллы, а также микротрубочки, митохондрии и агранулярная (гладкая) эндоплазматическая сеть. В зависимости от того, покрыты ли аксоны миелиновой (мякотной) оболочкой или лишены её, они образуют мякотные или безмякотные нервные волокна.

Миелиновая оболочка аксонов имеется только у позвоночных. Её образуют «накручивающиеся» на аксон специальные шванновские клетки, между которыми остаются свободные от миелиновой оболочки участки — перехваты Ранвье. Только на перехватах присутствуют потенциал-зависимые натриевые каналы и заново возникает потенциал действия. При этом нервный импульс распространяется по миелинизированным волокнам ступенчато, что в несколько раз повышает скорость его распространения.

Концевые участки аксона — терминали — ветвятся и контактируют с другими нервными, мышечными или железистыми клетками. На конце аксона находится синаптическое окончание — концевой участок терминали, контактирующий с клеткой-мишенью. Вместе с постсинаптической мембраной клетки-мишени синаптическое окончание образует синапс. Через синапсы передаётся возбуждение.

 

Аксо́нный тра́нспорт — это перемещение по аксону нервной клетки различного биологического материала.

Аксональные отростки нейронов отвечают за передачу потенциала действия от тела нейрона к синапсу. Также аксон представляет собой путь, по которому осуществляется транспорт необходимых биологических материалов между телом нейрона и синапсом, необходимый для функционирования нервной клетки. По аксону из области синтеза в теле нейрона транспортируются мембранные органеллы (митохондрии), различные везикулы, сигнальные молекулы, ростовые факторы, белковые комплексы, компоненты цитоскелета и даже Na+- и K+-каналы. Конечными пунктами этого транспорта служат определенные области аксона и синаптической бляшки. В свою очередь, нейротрофические сигналы транспортируются из области синапса к телу клетки. Это выполняет роль обратной связи, сообщающей о состоянии иннервации мишени.Длина аксона периферической нервной системы человека может превышать 1 м, а может быть и больше у крупных животных. Толщина большого мотонейрона человека составляет 15 мкм, что при длине в 1 м дает объём ~0,2 мм³, а это почти в 10000 раз больше объёма клетки печени. Это делает нейроны зависимыми от эффективного и координированного физического транспорта веществ и органелл по аксонам.

Величины длин и диаметров аксонов, а также количества материала, транспортируемого по ним, безусловно, говорят о возможности возникновения сбоев и ошибок в системе транспорта. Многие нейродегенеративные заболевания непосредственно связаны с нарушениями в работе этой системы.

Упрощённо аксонный транспорт можно представить как систему, состоящую из нескольких элементов. В неё входят груз, белки-моторы, осуществляющие транспорт, филаменты цитоскелета, или «рельсы», вдоль которых «моторы» способны передвигаться. Также необходимы белки-линкеры, связывающие белки-моторы с их грузом или другими клеточными структурами, и вспомогательные молекулы, запускающие и регулирующие транспорт.

Белки цитоскелета доставляются из тела клетки, двигаясь по аксону со скоростью от 1 до 5 мм в сутки. Это медленный аксонный транспорт (похожий на него транспорт имеется и в дендритах). Многие ферменты и другие белки цитозоля также переносятся при помощи этого типа транспорта.Нецитозольные материалы, которые необходимы в синапсе, такие как секретируемые белки и мембраносвязанные молекулы, двигаются по аксону с гораздо большей скоростью. Эти вещества переносятся из места их синтеза, эндоплазматического ретикулума, к аппарату Гольджи, который часто располагается у основания аксона. Затем эти молекулы, упакованные в мембранные пузырьки, переносятся вдоль рельсов-микротрубочек путем быстрого аксонного транспорта со скоростью до 400 мм в сутки. Таким образом по аксону транспортируются митохондрии, различные белки, включая нейропептиды (нейромедиаторы пептидной природы), непептидные нейромедиаторы.Транспорт материалов от тела нейрона к синапсу называется антероградным, а в обратном направлении — ретроградным.Транспорт по аксону на большие расстояния происходит с участием микротрубочек. Микротрубочки в аксоне обладают присущей им полярностью и ориентированны быстрорастущим (плюс-)концом к синапсу, а медленнорастущим (минус-) — к телу нейрона. Белки-моторы аксонного транспорта принадлежат к кинезиновому и динеиновому суперсемействам.Кинезины являются, в основном, плюс-концевыми моторными белка́ми, транспортирующими такие грузы, как предшественники синаптических везикул и мембранные органеллы. Этот транспорт идет в направлению к синапсу (антероградно). Цитоплазматические динеины — это минус-концевые моторные белки, транспортирующие нейротрофные сигналы, эндосомы и другие грузы ретроградно к телу нейрона. Ретроградный транспорт осуществляется динеинами не эксклюзивно: обнаружены несколько кинезинов, перемещающихся в ретроградном направлении.

 

 

14. Нервно-мышечные соединения.

Соединение Нервно-Мышечное (Neuromuscular Junction), Синапс Нервно-Мышечный (Myoneural Junction)

зона контакта двигательного окончания и мышечного волокна, которое иннервируется им. Каждое мышечное волокно иннервируется веточкой аксона двигательного нейрона, который, оканчиваясь на волокне, образует двигательную концевую пластинку. Структура, соединяющая нервное окончание и мышечное волокно - аксо-мышечный синапс - состоит из пресинаптической мембраны (плазматическая мембрана нервного окончания) и постсинаптической мембраны (плазматическая мембрана мышечного волокна), разделенных синаптической щелью, куда из нервного окончания выделяется нейромедиатор, вызывая сокращение мышцы.

Нервно-мышечный синапс (мионевральный синапс) — эффекторное нервное окончание на скелетном мышечном волокне.Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином). Электронная микрофотография среза нервномышечного синапса. Т - окончание аксона, М - мышечное волокно. Стрелка указывает на складки базальной мембраны. Шкала 0.3 мкм[1]Двигательные нервные окончания в гладкой мышечной ткани построены проще — безмиелиновые пучки аксонов проникают между глиоцитами к пласту гладких мышц и образуют булавовидные расширения, которые содержат холинергические и адренергические пузырьки.

 

 

15. Нейромедиаторы, их строение и функции, образование и метаболизм. Классификация нейромедиаторов.

Нейромедиа́торы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия. Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается, что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Аминокислоты (и их производные). К ним относят таурин, норадреналин, ДОФАминГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин, серотонин).

 Таурин. Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты (процесс идет в несколько стадий), а затем происходит декарбоксилирование. Таурин - это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты.

 Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

 Ацетилхолин. Для синтеза холина требуются аминокислоты серин, метионин. Этаноламин может быть использован и в готовом виде. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Второй же предшественник этого нейромедиатора - Ацетил-КоА, синтезируется в нервных окончаниях.

 Продукт этой реакции ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

 Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са2+ создается работой Са2+-зависимой.

 АТФазы – кальциевым насосом. Повышение концентрации Са2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

 Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц: 2-бета, 1-гамма и 1-дельта. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика - около 20000 молекул на 1 мкм2. Пространственная структура рецептора строго сооответствует конформации медиатора.

 При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом, повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор» и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

 Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

 Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые – в качестве боевых отравляющих веществ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

 Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

 Катехоламины: норадреналин и дофамин. Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

 Норадреналин – медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

 Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

 Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - ахромогранин (Мм = 77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминоксидазой, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

 Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме «Биохимия гормонов» с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

 ГАМК – тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

 Глицин – тормозной медиатор, по вызываемым эффектам подобен гамк.

 Пептиды. Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы.

 Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию от клетки к клетке по системе циркуляции.

 Сюда относятся:

 1. нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны и медиаторы;

 2. гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

 3. опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины - вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

 4. пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон;

 5. пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты;

 6. пептиды - компоненты ренин-ангиотензиновой системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

 

20. гематоэнцефалический и нейроликворный барьер; функции и строение.

Гематоэнцефалический барьер - полупроницаемый барьер между кровью и нервной тканью, препятствующий проникновению в мозг крупных или полярных молекул, а также клеток крови, в том числе иммунной системы. Плотные контакты между клетками эндотелия капилляров ЦНС препятствуют выходу лейкоцитов, микроорганизмов и даже макромолекул в субарахноидальное пространство. У некоторых микробов выработались высокоспециализированные механизмы (пока малоизученные) преодоления этого барьера. Известно, что вирусы бешенства и вирусы простого герпеса (у человека) и реовирус (у экспериментальных животных) попадают в ЦНС, передвигаясь по нервам, а инкапсулированные бактерии и грибы обладают поверхностными компонентами, позволяющими им проходить через гематоэнцефалический барьер. Таким образом, механизмы преодоления гематоэнцефалического барьера высокоспециализированы. Так, они имеются лишь у определенных серотипов возбудителей, способных вызывать менингит . Менингит новорожденных , например, вызывают только те Streptococcus agalactiae , которые относятся к серотипу III. Другие серотипы тоже патогенны, но вызывают инфекционные процессы вне ЦНС. Такая избирательность, видимо, определяется пространственной структурой капсульного полисахарида серотипа III, так как капсульные полисахариды других серотипов содержат те же компоненты, но имеют иную пространственную структуру. I Гематоэнцефали́ческий барье́р

физиологический механизм, избирательно регулирующий обмен веществ между кровью, цереброспинальной жидкостью и центральной нервной системой и обеспечивающий постоянство внутренней среды головного и спинного мозга.

 Г. б., осуществляя защитную функцию, препятствует проникновению в мозг некоторых чужеродных веществ, попадающих в кровь, и промежуточных продуктов обмена веществ, образующихся при некоторых патологических состояниях, причем роль Г. б. в процессе филогенеза возрастает. Так., некоторые вещества легко проникают из крови в мозг у низкоорганизованных, но задерживаются Г. б. у более высокоорганизованных организмов. Отмечена также более высокая проницаемость Г. б. у эмбрионов и новорожденных по сравнению со взрослым организмом.

 Морфологическим субстратом Г. б. являются анатомические элементы, расположенные между кровью и нервными клетками (так называемые межэндотелиальные контакты, охватывающие клетку в виде тесного кольца и препятствующие проникновению веществ из капилляров). Отростки глиальных клеток (концевые ножки астроцитов), окружающие капилляр, стягивают его стенку, что уменьшает фильтрационную поверхность капилляра, препятствует диффузии макромолекул. Согласно другим представлениям, глиальные отростки являются каналами, способными избирательно экстрагировать из кровотока вещества, необходимые для питания нервных клеток, и возвращать в кровь продукты их обмена. Важное значение в функции Г. б. придается так называемому ферментному барьеру. В стенках микрососудов мозга, окружающей их соединительнотканной стромы, а также в сосудистом сплетении обнаружены ферменты, способствующие нейтрализации и разрушению поступающих из крови веществ. Распределение этих ферментов неодинаково в капиллярах разных структур мозга, их активность изменяется с возрастом, в условиях патологии.

 Г. б. рассматривают в качестве саморегулирующейся системы, состояние которой зависит от потребностей нервных клеток и уровня метаболических процессов не только в самом мозге, но и в других органах и тканях организма. Проницаемость Г. б. неодинакова в разных отделах мозга, селективна для разных веществ и регулируется нервными и гуморальными механизмами. Важная роль в нейрогуморальной регуляции функций Г. б. принадлежит изменению интенсивности метаболических процессов в ткани мозга, что доказывается угнетающим влиянием ингибиторов метаболических процессов на скорость транспорта аминокислот в мозг и стимуляцией их поглощения субстратами окисления.

 Различают два пути поступления веществ в ц.н.с. — через кровеносные капилляры и ликворную систему. При этом одни вещества проникают главным образом через капилляры, другие используют оба пути, третьи — преимущественно через цереброспинальную жидкость.

 Снижение проницаемости Г. б. способствует проникновению в ц.н.с. разнообразных чужеродных веществ, продуктов нарушенного метаболизма. В то же время направленное снижение проницаемости Г. б. используют в клинической практике для повышения эффективности химиотерапевтических препаратов, антибиотиков, а также введения антител, гормонов, медиаторов, в обычных условиях не попадающих в мозг, благодаря функционированию Г. б.

 Проникновение в мозг в области Гипоталамуса, где Г. б. «прорван», различных патологических агентов сопровождается разнообразной симптоматикой нарушений вегетативной нервной системы (Вегетативная нервная система).

Имеются многочисленные доказательства снижения защитной функции Г. б. под влиянием алкоголя, в условиях эмоционального стресса, перегревания и переохлаждения организма, воздействия ионизирующего излучения и т. д.

 В то же время экспериментально установлена способность некоторых препаратов, например пентамина, этаминал-натрия, витамина Р. уменьшать проникновение в мозг определенных веществ.

 См. также Барьерные функции.

 Библиогр.: Бредбери М. Концепция гемато-энцефалического барьера, пер. с англ., М., 1983; Майзелис М.Я. Современные представления о гематоэнцефалическом барьере: нейрофизиологические и нейрохимические аспекты, Журн. высш. нервн. деятельн., т. 36, вып. 4, с. 611, 1986.

II Гематоэнцефали́ческий барье́р (гемато- (Гем-) + анат. encephalon головной мозг)

гистогематический барьер между кровью, с одной стороны, и цереброспинальной жидкостью и нервной тканью — с другой.

 

 

21.Онтогенез нервной системы человека.

В процессе онтогенеза человека на дорсальной поверхности наружного (эк-тодермального) зародышевого листка дифференцируется нервная, или мозговая, борозда (медуллярный желобок). Она постепенно углубляется, края ее сближаются, образуя нервную, или мозговую, трубку. В трубке герминативный (ростковый, зародышевый) клеточный слой, находящийся в наружном (экто-дермальном) зародышевом листке снаружи, оказывается внутри.Нервная трубка развивается неравномерно. Передний отдел ее постепенно утолщается и уже на 4 нед развития зародыша здесь образуется три мозговых пузыря: передний — prosencephalon, средний — mesencephalon, задний — rombencephalon.В дальнейшем (на 6 нед) передний и задний мозговые пузыри делятся на две части. Таким образом, стадия 3 пузырей сменяется стадией 5 пузырей (рис. 2.1), из которых в последующем и происходит формирование головного мозга (рис. 2.2), при этом в процессе онтогенеза из переднего, точнее — из

первичного переднего мозгового пузыря, выделяется и быстро увеличивается вторичный передний мозговой пузырь, или конечный мозг (telencephalon). Из него формируются главным образом парное образование — большие полушария, а полость его превращается в боковые желудочки мозга (левый признается первым, правый — вторым); каждый из них имеет центральную часть и три рога, при этом центральная часть бокового желудочка оказывается в глубине теменной доли большого полушария, передний рог — в лобной доле, нижний рог — в височной доле, задний рог — в затылочной. Производными вторичного переднего мозгового пузыря оказываются и периферические структуры обонятельного анализатора. Первичный передний мозговой пузырь становится источником формирования главным образом структур промежуточного мозга (diencephalon), а полость его преобразуется в непарный III мозговой желудочек. С каждой стороны промежуточного мозга в дальнейшем вырастает по глазному пузырю, из которого формируются зрительные тракты, зрительные нервы и сетчатка. Из среднего мозгового пузыря образуется средний мозг (mesencephalon)', полость его превращается в водопровод мозга. Из заднего (rombencephalon) мозгового пузыря создаются два отдела. Один из них — задний мозг (metencephalon) идет на формирование моста мозга и мозжечка, а из оставшейся части ромбовидного мозга (замозжья) формируется продолговатый мозг (myelencephalon, medulla oblongata, bulbus). Полость ромбовидного мозга при этом превращается в IV мозговой желудочек, дно которого имеет форму ромба (ромбовидная ямка).

В процессе дифференциации зародышевых (герминативных) клеток, составляющих внутренний слой медуллярной трубки, часть их, проходя стадию нейробласта, превращается в нейроциты (нейроны) — зрелые нервные клетки. Другая часть зародышевых клеток, пройдя определенные стадии созревания, трансформируется в зрелые глиальные элементы (астроциты, олигодендроци-ты, эпендимоциты).К моменту рождения ребенка нервные клетки достигают зрелости и уже неспособны к делению. В связи с этим в дальнейшем их число не увеличивается, и если нервная ткань в процессе онтогенеза развивается нормально, в последующем не возникает опухолей, состоящих из нейронов. Глиальные же клетки во всех стадиях своего развития способны к митотическому делению, и в течение жизни человека в мозге его могут быть обнаружены глиальные элементы разной степени зрелости. Из подвергшихся мутации глиальных клеток возможно формирование опухолей практически в любом возрасте человека. Это истинные мозговые опухоли, известные как глиальные опухоли, или глиомы. В зависимости от степени зрелости составляющих их глиальных клеток глиомы могут дифференцироваться на незрелые (злокачественные) и зрелые (доброкачественные).В мозговых желудочках главным образом железистыми клетками сосудистых ворсинчатых (хориоидальных) сплетений осуществляется секреция цереброспинальной жидкости (ЦСЖ) или ликвора. Другим источником продукции ЦСЖ признаются эпителиальные клетки и клетки интерстициальной соединительной ткани, также находящиеся в желудочках мозга. Полости мозговых пузырей, трансформируясь в желудочки мозга, сохраняют связи друг с другом, при этом парные боковые желудочки соединяются с непарным 111 мозговым желудочком через межжелудочковые отверстия (отверстия Монро). III мозговой желудочек через водопровод мозга (aqueductus cerebri, сильвиев водопровод) соединяется с образующимся из полости ромбовидного мозга IV мозговым желудочком.К 8 нед развития плода возникает переполнение ЦСЖ желудочковой системы формирующегося мозга, т.е. появляется тенденция к развитию внутренней гидроцефалии, при этом в желудочковой системе повышается давление ЦСЖ, что способствует раскрытию апертур (отверстий) IV мозгового желудочка — непарной срединной апертуры (отверстие Мажанди) и парной латеральной апертуры (отверстие Люшки). После раскрытия этих апертур ЦСЖ получает возможность выхода в мозжечково-мозговую (большую) цистерну и боковые цистерны моста, при этом давление ЦСЖ в желудочках головного мозга нормализуется, а центральный канал спинного мозга, формирующегося из той части нервной трубки, которая не участвовала в развитии мозговых пузырей, постепенно запустевает и редуцируется.

 

22. Нейругляция. Механизм формирования нервной трубки.

Нейруляция, образование нервной пластинки и её замыкание в нервную трубку в процессе зародышевого развития хордовых животных и человека. Зародыш на стадии Н. называется нейрулой. В процессе Н. происходит вычленение в составе трёх зародышевых листков ачатков отдельных систем органов. Наружный листок — эктодерма — утолщается на спинной стороне зародыша и образует нервную пластинку, по краям которой поднимаются нервные валики. Средняя часть нервной пластинки углубляется, валики сближаются и, соединяясь между собой, образуют нервную трубку — зачаток центральной нервной системы. Оставшаяся эктодерма смыкается над нервной трубкой и превращается в покровный эпителий. Внутренний зародышевый листок — энтодерма — у животных с полным дроблением яиц подрастает к спинной стороне зародыша и полностью окружает гастроцель, который, т. о., превращается в полость кишечника. У животных с неполным дроблением яиц кишечник на брюшной стороне остаётся незамкнутым; нижней стенкой его служит нераздробившийся желток. Средний зародышевый листок — мезодерма — расчленяется на средний продольный тяж клеток (зачаток хорды) и лежащие по бокам от него спинные сегменты (сомиты), сегментные ножки (нефротомы) и боковые пластинки. К концу Н. зародыш приобретает план строения взрослого организма: на спинной стороне, под эпителием, располагается нервная трубка, под ней — хорда, под хордой — кишечник; различимы передний и задний отделы тела зародыша.

Нервная трубка — зачаток ЦНС у хордовых, образующийся в процессе нейруляции из нервной пластинки.

В поперечном сечении в ней вскоре после образования можно выделить три слоя, изнутри наружу:

Эпендимный — псевдомногослойный слой, содержащий зачаточные клетки.

Мантийная зона, или плащевой слой — содержит мигрирующие, пролиферирующие клетки, выселяющиеся из эпендимного слоя.

Наружная краевая зона — слой, где образуются нервные волокна.

В центре нервной трубки находится первичный желудочек.

Развитие нервной трубки происходит по следующему механизму: делящиеся клетки эпендимы, выходят в мантийную зону, где развиваются либо по нейробластальному пути — закрепляются и пускают отростки, выходящие в наружную краевую зону, либо по глиобластальному — не прикрепляются и превращаются в глиальные клетки.Содержание

1 Слои нервной трубки

1.1 Эпендимный слой

1.2 Мантийная зона

1.3 Наружная краевая зона

2 Формирование спинного мозга

2.1 Факторы формообразования

Слои нервной трубки

Эпендимный слой

В эпендимном слое можно выделить несколько функциональных зон, с течением времени переходящие одна в другую циклами. В зонах деления клетки, прикрепленные к внутреннему краю слоя, вытягиваются отростком к внешнему краю эпендимы, и поднимают туда тело с ядром, в котором в это время проходит синтез ДНК, а потом снова стягиваются к нижнему краю. В зонах деления клетка, прикрепленная к нижнему краю, проходит процесс митоза и разделяется на две. В зонах миграции одна из этих двух клеток переходит снова к стадии деления, а вторая, используя её, мигрирует в мантийную зону.

Мантийная зона

Выселившиеся из эпендимного слоя клетки становятся нейробластами и спонгиобластами.

Нейробласты — клетки, прикрепившиеся к внутреннему краю слоя. Безотростковый нейробласт становится биполярным нейробластом, оставаясь прикрепленным, потом отрывается от внутреннего края мантийной зоны, становясь униполярным нейробластом.

Далее нейробласт развивается в мультиполярный нейробласт, выпуская аксон в наружную краевую зону, и образуя дендритное дерево. После этого он становится нейроном.

Если же клетки не закрепляются изначально, они развиваются в глиальные клетки (астроцитобласты, олигодендроцитобласты).

Мантийная зона является предшественником серого вещества спинного мозга.

Наружная краевая зона

В этом слое образуются волокна, он является предшественником белого вещества в спинномозговом отделе нервной трубки.

Формирование спинного мозга

Клетки нервной трубки активно делятся на полюсах, и нервная трубка в поперечном разрезе приобретает форму песочных часов. Верхнее утолщение называется крыловидной пластинкой, нижнее — базальной пластинкой (термины подразумевают обычно части мантийной зоны).

В первичном желудочке нервной трубки образуется первая в онтогенезе борозда ЦНС — пограничная борозда (лат. sulcus limitans).

Далее из крыловидной пластинки начинают формироваться задние, а из базальной — передние рога спинного мозга. В ростральном же отделе в основном из крыловидной пластинки формируется головной мозг.

В процессе дифференцировки нервной трубки важную роль играет явление миграции нейробластов за краевую зону. Миграция как таковая происходит во всех отделах нервной трубки, но в спинном мозге она не простирается за краевую зону, и спинной мозг в итоге остается наиболее приближенном в зародышевому разделению слоев (центральный канал — серое вещество — белое вещество). В мозжечке нейробласты мигрируют в краевую зону, образуя два слоя внутри нее: более близкий к центру слой клеток-зерен и клеток Гольджи, и за ним — слой клеток Пуркинье. В конечном мозге нейробласты, мигрирующие в краевую зону, создают там один слой — кортекс, впоследствии развивающийся в кору головного мозга.

Факторы формообразования

Крыловидная пластинка образуется при активации генов Pax, (участвует BMP-фактор), базальная — при подавлении Pax (участвует Shh (Sonic hedgehog factor), выделяющийся из зачатка хорды).[источник не указан 729 дней]

 

25. Оболочки головного и спинного мозга(твердая, паутинная, мягкая). Подпаутинное пространство.

Головной и спинной мозг имеют три оболочки - твердую, паутинную и мягкую. Оболочки головного и спинного мозга защищают мозговое вещество от различных вредных воздействий. Твердая оболочка с ее отростками и паутинные цистерны осуществляют механическую защиту мозга. Паутинная и мягкая оболочки обеспечивают циркуляцию спинно-мозговой жидкости и питание вещества мозга. Кроме того, мозговые оболочки защищают паренхиму мозга от проникновения инфекционных и токсических веществ.

Оболочки головного мозга

 А. Кожа, B. Костная чешуя черепа, C. Мозговые оболочки, D. Кора полушарий

 Мозговые оболочки: 1. твердая, 2. паутинная, 3. мягкая, 4. подпаутинное пространство, 5. венозный синус, 6. выпускники, 7. грануляции

Твердая оболочка головного мозга является его наружной оболочкой. Состоит из двух слоев: наружный слой образует надкостницу костей черепа; внутренний обращен к мозгу и образует складки - синусы твердой мозговой оболочки, заполненные венозной кровью. Твердая оболочка головного мозга снабжена нервами и сосудами.Паутинная оболочка головного мозга находится под твердой и не имеет сосудов. От твердой оболочки головного мозга она отделена субдуральным пространством и от сосудистой - подпаутинным, заполненным спинно-мозговой жидкостью. В связи с неровным рельефом поверхности головного мозга подпаутинное пространство в некоторых местах расширяется, образуя цистерны.Мягкая оболочка головного мозга покрывает вещество мозга, очень богата сосудами и нервами. Она тесно связана с мозговым веществом, заходя в глубь его вдоль сосудов (околососудистые пространства). Проникая в желудочки мозга (III, IV и боковые), она участвует в образовании сосудистых сплетений, вырабатывающих спинно-мозговую жидкость.Наружная, твердая, оболочка спинного мозга отделена от позвоночного столба эпидуральным пространством. Средняя, паутинная, оболочка отделяется от твердой оболочки субдуральным пространством, а от мягкой - подпаутинным. Последнее образует ниже спинного мозга (в области корешков спинно-мозговых нервов - так называемого конского хвоста) терминальный желудочек, заполненный спинно-мозговой жидкостью.

Спинно-мозговая жидкость, заполняющая подпаутинное пространство головного и спинного мозга, образуется сосудистыми сплетениями, которые находятся в желудочках мозга. Из боковых желудочков спинно-мозговая жидкость проникает через межжелудочковые отверстия в III желудочек, а затем по водопроводу среднего мозга в IV желудочек и из него - в подпаутинное пространство головного и спинного мозга. Отток спинно-мозговой жидкости происходит в основном через венозную систему мозга. Давление спинно-мозговой жидкости в норме 0,98-1,76 кПа (100-180 мм вод. ст.).

Спинно-мозговая жидкость обеспечивает нормальное функционирование центральной нервной системы. Она защищает вещество мозга от механических повреждений при перемене положения тела, участвует в обмене веществ в головном и спинном мозге, доставляя к ним питательные вещества и выводя от них продукты обмена, а также поддерживает постоянство внутренней среды мозга. Помимо желудочков и подпаутинных пространств головного и спинного мозга спинно-мозговая жидкость содержится в околососудистых или околоклеточных пространствах мозгового вещества.

В состав спинно-мозговой жидкости входят вода, клетки (лимфоциты), белковые вещества, глюкоза, хлориды, электролиты, микроэлементы, витамины, гормоны. Общее количество спинно-мозговой жидкости у взрослого человека в норме 120-150 мл.

 

 

26. Желудочки мозга.

Желудочки головного мозга — полости в головном мозге, заполненные спинномозговой жидкостью.

К желудочкам головного мозга относятся:

Боковые желудочки — ventriculi laterales (telencephalon);

Боковые желудочки головного мозга (лат. ventriculi laterales) — полости в головном мозге, содержащие ликвор, наиболее крупные в желудочковой системе головного мозга. Левый боковой желудочек считается первым, правый — вторым. Боковые желудочки сообщаются с третьим желудочком посредством межжелудочковых (монроевых) отверстий. Располагаются ниже мозолистого тела, симметрично по сторонам от срединной линии. В каждом боковом желудочке различают передний (лобный) рог, тело (центральную часть), задний (затылочный) и нижний (височный) рога.

Третий желудочек — ventriculus tertius (diencephalon);

Третий желудочек мозга — ventriculus tertius-находится между зрительными буграми, имеет кольцевидную форму, так как в него прорастает промежуточная масса зрительных бугров-massa intermedia thalami. В стенках желудочка находится центральное серое мозговое вещество-substantia grisea centralis- в нем располагаются подкорковые вегетативные центры. Третий желудочек сообщается с мозговым водопроводом среднего мозга, а позади назальной спайки мозга-comissura nasalis- с боковыми желудочками мозга через межжелудочковое отверстие-foramen interventriculare.

Четвёртый желудочек — ventriculus quartus (mesencephalon).

помещается между мозжечком и продолговатым мозгом. Сводом ему служит червячок и мозговые парусы, а дном — продолговатый мозг и мост. представляет собой остаток полости заднего мозгового пузыря и поэтому является общей полостью для всех отделов заднего мозга, сосгавляющих ромбовидный мозг, rhombencephalon (продолговатый мозг, мозжечок, мост и перешеек). IV желудочек напоминает палатку, в которой различают дно и крышу.

Дно, или основание, желудочка имеет форму ромба, как бы вдавленного в заднюю поверхность продолговатого мозга и моста. Поэтому его называют ромбовидной ямкой, fossa rhomboidea. В задненижний угол ромбовидной ямки открывается центральный канал спинного мозга, а в передневерхнем углу IV желудочек сообщается с водопроводом. Латеральные углы заканчиваются слепо в виде двух карманов, recessus laterales ventriculi quarti, загибающихся вентрально вокруг нижних ножек мозжечка

Два боковых желудочка относительно крупные, они имеют С-образную форму и неровно огибают спинные части базальных ганглиев. В желудочках головного мозга синтезируется спинномозговая жидкость (ликвор), которая затем поступает в субарахноидальное пространство. Нарушение оттока ликвора из желудочков проявляется гидроцефалией.

 

 

27. Спинномозговая и черепно-мозговая жидкость (ликвор), ее функции. Циркуляция ликвора.

Спинномозгова́я жидкость (цереброспина́льная жидкость, ли́квор) — жидкость, постоянно циркулирующая в желудочках головного мозга, ликворопроводящих путях, субарахноидальном (подпаутинном) пространстве головного и спинного мозга. Предохраняет головной и спинной мозг от механических воздействий, обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного гомеостаза. Поддерживает трофические и обменные процессы между кровью и мозгом. Флуктуация ликвора оказывает влияние на вегетативную нервную систему. Основной объём цереброспинальной жидкости образуется путём активной секреции железистыми клетками сосудистых сплетений в желудочках головного мозга. Другим механизмом образования цереброспинальной жидкости является пропотевание плазмы крови через стенки кровеносных сосудов и эпендиму желудочков.

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1). Продукцию (образование) ликвора.

2). Циркуляцию ликвора.

3). Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга - это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга - это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

 

 

32. Белое вещество спинного мозга: строение и функции.

Белое вещество спинного мозга представлено отростками нервных клеток, которые составляет тракты, или проводящие пути спинного мозга:

1) короткие пучки ассоциативных волокон , связывающие сегменты спинного мозга, расположенные на различных уровнях;

2) восходящие (афферентные, чувствительные) пучки, направляющиеся к центрам большого мозга и мозжечка ;

3) нисходящие (эфферентные, двигательные) пучки, идущие от головного мозга к клеткам передних рогов спинного мозга .

Белое вещество спинного мозга располагается по периферии серого вещества спинного мозга и представляет собой совокупность миелинизированных и отчасти маломиелинизированных нервных волокон , собранных в пучки. В белом веществе спинного мозга расположены нисходящие волокна (идущие из головного мозга) и восходящие волокна , которые начинаются от нейронов спинного мозга и проходят в головной мозг . По нисходящим волокнам передается преимущественно информация от моторных центров головного мозга к мотонейронам (двигательным клеткам) спинного мозга. По восходящим волокнам поступает информация как от соматических, так и от висцеральных чувствительных нейронов. Расположение восходящих и нисходящих волокон носит закономерный характер. На спинной (дорсальной) стороне расположены преимущественно восходящие волокна , а на брюшной (вентральной) - нисходящие волокна .

Борозды спинного мозга разграничивают белое вещество каждой половины на передний канатик белого вещества спинного мозга , боковой канатик белого вещества спинного мозга и задний канатик белого вещества спинного мозга

Передний канатик ограничен передней срединной щелью и переднебоковой бороздой . Боковой канатик расположен между переднебоковой бороздой и заднебоковой бороздой . Задний канатик находится между задней срединной бороздой и заднебоковой бороздой спинного мозга .

Белое вещество обеих половин спинного мозга связано двумя комиссурами (спайками): дорсальной, лежащей под восходящими путями, и вентральной, находящейся рядом с моторными столбами серого вещества .

В составе белого вещества спинного мозга различают 3 группы волокон (3 системы проводящих путей):

- короткие пучки ассоциативных (межсегментных) волокон, связывающие участки спинного мозга на различных уровнях;

- длинные восходящие (афферентные, чувствительные) проводящие пути, которые идут от спинного мозга к головному;

- длинные нисходящие (эфферентные, двигательные) проводящие пути, идущие от головного мозга к спинному.

Межсегментные волокна образуют собственные пучки, расположенные тонким слоем по периферии серого вещества и осуществляющие связи между сегментами спинного мозга. Они присутствуют в переднем, заднем и боковом канатиках.

Большую часть переднего канатика белого вещества составляют нисходящие проводящие пути.

В боковом канатике белого вещества есть и восходящие, и нисходящие пути. Они начинаются как из коры больших полушарий , так и от ядер ствола головного мозга.

В заднем канатике белого вещества расположены восходящие проводящие пути. В верхней половине грудной части и в шейной части спинного мозга задняя промежуточная борозда спинного мозга делит задний канатик белого вещества на два пучка: тонкий пучок (пучок Голля) , лежащий медиально , и клиновидный пучок (пучок Бурдаха) , расположенный латерально . Тонкий пучок содержит афферентные пути , идущие от нижних конечностей и от нижней части тела. Клиновидный пучок состоит из афферентных путей , проводящих импульсы от верхних конечностей и от верхней части тела. Разделение заднего канатика на два пучка хорошо прослеживается в 12 верхних сегментах спинного мозга начиная с 4-го грудного сегмента.

Нужно отметить, что собственно от нейронов спинного мозга начинаются только межсегментарные и восходящие в головной мозг волокна . Поскольку они происходят от спинальных нейронов, их еще называют эндогенными (внутренними) волокнами. Длинные нисходящие волокна обычно начинаются от нейронов головного мозга. Их называют экзогенными (внешними) волокнами спинного мозга. К экзогенным волокнам относят и входящие в спинной мозг отростки чувствительных нейронов, расположенных в ганглиях задних корешков ( рис. 8 ). Отростки этих нейронов формируют длинные восходящие волокна, достигающие головного мозга и составляющие большую часть заднего канатика. Каждый сенсорный нейрон формирует и вторую, более короткую межсегментарную ветвь. Она распространяется только на несколько сегментов спинного мозга.

 

 

33. Аппарат собственных связей спинного мозга и двухсторонних связей с головным мозгом.

В процессе эволюции спинного мозга образуется два аппарата: более старый сегментарный аппарат собственных связей спинного мозга и более новый надсегментарный аппарат двусторонних проводящих путей к головному мозгу.

Белое вещество спинного мозга состоит из нервных отростков, которые составляют 3 системы нервных волокон:

1) короткие пучки ассоциативных волокон, соединяющих участки спинного мозга на различных уровнях ( афферентные и вставочные нейроны );

2) длинные центростремительные ( чувствительные, афферентные );

3) длинные центробежные ( двигательные, эфферентные ).

Первая система ( коротких волокон ) относится к собственному аппарату спинного мозга, а остальные две ( длинных волокон ) составляют проводниковый аппарат двусторонних связей с головным мозгом.

Собственный аппарат включает серое вещество спинного мозга с задними и передними корешками и собственными пучками белого вещества, окаймляющими серое в виде узкой полосы. По развитию собственный аппарат является образованием филогенетически более старым и потому сохраняет некоторую примитивность строения - сегментарность, отчего его называют также сегментарным аппаратом спинного мозга в отличие от остального несегментированного аппарата двусторонних связей с головным мозгом. Таким образом, нервный сегмент - это поперечный отрезок спинного мозга и связанных с ним правого и левого спинномозговых нервов, развившихся из одного невротома ( невромера ). Он состоит из горизонтального слоя белого и серого вещества ( задние, передние и боковые рога ), содержащего нейроны, отростки которых проходят в одном парном (правом и левом) спинномозговом нерве и его корешках. В спинном мозге различают 31 сегмент, которые топографически делятся на 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый. В пределах нервного сегмента замыкается короткая, простая рефлекторная дуга.

Так как собственный сегментарный аппарат спинного мозга возник тогда, когда еще не было головного, то функция его - это осуществление тех реакций в ответ на внешнее и внутреннее раздражения, которые в процессе эволюции возникли раньше, т. е. врожденных реакций.

Аппарат двусторонних связей с головным мозгом филогенетически более молодой, так как возник лишь тогда, когда появился головной мозг.

Нервные импульсы, возникающие при раздражении рецептора ( Р ), по афферентным волокнам идут к спинному мозгу , где через вставочный нейрон передаются на эфферентные волокна, по которым доходят до эффектора. По мере развития последнего разрастались кнаружи и проводящие пути, связывающие спинной мозг с головным. Этим объясняется тот факт, что белое вещество спинного мозга как бы окружило со всех сторон серое вещество. Благодаря проводниковому аппарату собственный аппарат спинного мозга связан с аппаратом головного мозга, который объединяет работу всей нервной системы. Нервные волокна группируются в пучки, а из пучков составляются видимые невооруженным глазом канатики: задний, боковой и передний. В заднем канатике, прилежащем к заднему ( чувствительному ) рогу, лежат пучки восходящих нервных волокон; в переднем канатике, прилежащем к переднему ( двигательному ) рогу, лежат пучки нисходящих нервных волокон, наконец, в боковом канатике находятся и те и другие.

 

 

34. ВОСХОДЯЩИЕ И НИСХОДЯЩИЕ ПРОВОДЯЩИЕ ПУТИ, СОЕДИНЯЮЩИЕ СПИННОЙ МОЗГ С ГОЛОВНЫМ

 Проводящие пути ЦНС построены из функционально однородных групп нервных волокон; они представляют собой внутренние связи между ядрами и корковыми центрами, расположенными в разных частях и отделах мозга, и служат для их функционального объединения (интеграции). Проводящие пути, как правило, проходят в белом веществе спинного и головного мозга, но могут локализоваться и в покрышке ствола мозга, где чётких границ между белым и серым веществом нет.

 Основным проводящим звеном в системе передачи информации от одних центров мозга к другим являются нервные волокна – аксоны нейронов, передающие информацию в форме нервного импульса в строго определённом направлении, а именно от тела клетки. Среди проводящих путей в зависимости от их строения и функционального значения выделяют различные группы нервных волокон: волокна, пучки, тракты, лучистости, спайки (комиссуры).

 Проекционные пути состоят из нейронов и их волокон, обеспечивающих связи между спинным и головным мозгом. Проекционные пути соединяют также ядра ствола с базальными ядрами и корой больших полушарий, а также ядра ствола с корой и ядрами мозжечка. Проекционные пути могут быть восходящими и нисходящими.

Восходящие (сенсорные, чувствительные, афферентные) проекционные пути проводят нервные импульсы от экстеро-, проприо- и интерорецепторов (чувствительных нервных окончаний в коже, органах опорно-двигательного аппарата, внутренних органах), а также от органов чувств в восходящем направлении к головному мозгу, преимущественно к коре мозга, где в основном заканчиваются на уровне IV цитоархитектонического слоя.

 Отличительной особенностью восходящих путей является многоэтапная, последовательная передача сенсорной информации в кору головного мозга через ряд промежуточных нервных центров.

 Помимо коры головного мозга сенсорная информация направляется также в мозжечок, в средний мозг и в ретикулярную формацию.

 Нисходящие (эфферентные или центробежные) проекционные пути проводят нервные импульсы от коры больших полушарий, где берут начало от пирамидных нейронов V цитоархитектонического слоя, к базальным и стволовым ядрам головного мозга и далее к моторным ядрам спинного мозга и ствола мозга.

 Они передают информацию, связанную с программированием движений организма в конкретных ситуациях, поэтому являются двигательными проводящими путями.

 Общей особенностью нисходящих двигательных путей является то, что они обязательно проходят через внутреннюю капсулу – прослойку белого вещества в полушариях большого мозга, отделяющую таламус от базальных ядер. В стволе мозга большая часть нисходящих путей, направляющихся в спинной мозг и мозжечок, идут в его основании.

35. ПИРАМИДНАЯ И ЭКСТРАПИРАМИДНЫЕ СИСТЕМЫ

Пирамидная система представляет собой совокупность двигательных центров коры мозга, моторных центров черепных нервов, залегающих в стволе мозга, и моторных центров в передних рогах спинного мозга, а также эфферентных проекционных нервных волокон, связывающих их между собой.

 Пирамидные пути обеспечивают проведение импульсов в процессе сознательной регуляции движений.

 Пирамидные пути формируются из гигантских пирамидных нейронов (клеток Беца), а также крупных пирамидных нейронов, локализованных в V слое коры больших полушарий. Примерно 40% волокон начинается от пирамидных нейронов в предцентральной извилине, где находится корковый центр двигательного анализатора; около 20% - от постцентральной извилины, а остальные 40% - от задних участков верхней и средней дольных извилин, и от надкраевой извилины нижней теменной дольки, в которой расположен центр праксии, контролирующий сложные координированные целенаправленные движения.

 Пирамидные пути подразделяют на корково-спинномозговой и корково-ядерный. Их общей особенностью является то, что они, начинаясь в коре правого и левого полушарий, переходят на противоположную сторону мозга (т.е. перекрещиваются) и в конечном итоге осуществляют регуляцию движений контрлатеральной полвины тела.

 Экстрапирамидная система объединяет филогенетически более древние механизмы управления движениями человека, чем пирамидная система. Она осуществляет преимущественно непроизвольную, автоматическую регуляцию сложных двигательных проявлений эмоций. Отличительной особенностью экстрапирамидной системы является многоэтапная, с множеством переключений, передача нервных влияний от различных отделов головного мозга к исполнительным центрам – моторным ядрам спинного мозга и черепных нервов.

 По экстрапирамидным путям происходит передача двигательных команд при защитных двигательных рефлексах, протекающих бессознательно. Например, благодаря экстрапирамидным путям передаётся информация при восстановлении вертикального положения тела в результате потери равновесия (вестибулярные рефлексы) или при двигательных реакциях на внезапное световое или звуковое воздействие (защитные рефлексы, замыкающиеся в крыше среднего мозга) и т.д.

 Экстрапирамидную систему образуют ядерные центры полушарий (базальные ядра: хвостатое и чечевицеобразное), промежуточного мозга (медиальные ядра таламуса, субталамическое ядро) и ствола мозга (красное ядро, черное вещество), а также проводящие пути, связывающие её с корой больших полушарий, с мозжечком, с ретикулярной формацией и, наконец, с исполнительными центрами, лежащими в моторных ядрах черепных нервов и в передних рогах спинного мозга.

 Существует также и несколько расширенная трактовка, когда к Э.С. причисляют мозжечок, ядра четверохолмия среднего мозга, ядра ретикулярной формации и т.д.

 Корковые пути берут начало от предцентральной извилины, а также других отделов коры мозга; эти пути проецируют влияние коры на базальные ядра. Сами базальные ядра тесно связаны между собой многочисленными внутренними связями, а также с ядрами таламуса и с красным ядром среднего мозга. Формирующиеся здесь двигательные команды передаются на исполнитель

1


Сейчас читают про: