1) математическое ожидание
Теорема: М(а) = a, M(b) = b - несмещенность оценок
Это означает, что при увеличении количества наблюдений значения МНК-оценок a и b будут приближаться к истинным значениям a и b;
2) дисперсия
Теорема:
; 
Благодаря этой теореме, мы можем получить представление о том, как далеко, в среднем, наши оценки a и b находятся от истинных значений a и b.
Необходимо иметь в виду, что дисперсии характеризуют не отклонения, а «отклонения в квадрате». Чтобы перейти к сопоставимым значениям, рассчитаем стандартные отклонения a и b:
; 
Будем называть эти величины стандартными ошибками a и b соответственно.
5. Построение доверительных интервалов
Пусть мы имеем оценку а. Реальное значение коэффициента уравнения регрессии a лежит где-то рядом, но где точно, мы узнать не можем. Однако, мы можем построить интервал, в который это реальное значение попадет с некоторой вероятностью. Доказано, что:

с вероятностью Р = 1 - g
где tg/2(n-1) - g/2-процентная точка распределения Стьюдента с (n-1) степенями свободы – определяется из специальных таблиц.
При этом уровень значимостиg устанавливается произвольно.
Неравенство можно преобразовать следующим образом:


,
или, что то же самое:

Аналогично, с вероятностью Р = 1 - g:

откуда следует:
,
или:

Уровень значимости g - это вероятность того, что на самом деле истинные значения a и b лежат за пределами построенных доверительных интервалов. Чем меньше его значение, тем больше величина tg/2(n-1), соответственно, тем шире будет доверительный интервал.
6. Проверка статистической значимости коэффициентов регрессии
Мы получили МНК-оценки коэффициентов, рассчитали для них доверительные интервалы. Однако мы не можем судить, не слишком ли широки эти интервалы, можно ли вообще говорить о значимости коэффициентов регрессии.
Гипотеза Н0: предположим, что a=0, т. е. на самом деле независимой постоянной составляющей в отклике нет (альтернатива – гипотеза Н1: a ¹ 0).
Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика, для парной регрессии:

Значение t-статистики сравнивается с табличным значением tg/2(n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы.
Если |t| < tg/2(n-1) – гипотеза Н0 не отвергается (обратить внимание: не «верна», а «не отвергается»), т. е. мы считаем, что с вероятностью 1-g можно утверждать, что a = 0.
В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1.
Аналогично для коэффициента b формулируем гипотезу Н0: b = 0, т. е. переменная, выбранная нами в качестве фактора, на самом деле никакого влияния на отклик не оказывае.
Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика:

и сравнивается с табличным значением tg/2(n-1).
Если |t| < tg/2(n-1) – гипотеза Н0 не отвергается, т. е. мы считаем, что с вероятностью 1-g можно утверждать, что b = 0.
В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1.
7. Автокорреляция остатков.
1. Примеры автокорреляции.
Возможные причины:
1) неверно выбрана функция регрессии;
2) имеется неучтенная объясняющая переменная (переменные)
2. Статистика Дарбина-Уотсона

Очевидно:
0 £ DW £ 4
Если DW близко к нулю, это позволяет предполагать наличие положительной автокорреляции, если близко к 4 – отрицательной.
Распределение DW зависит от наблюденных значений, поэтому получить однозначный критерий, при выполнении которого DW считается «хорошим», а при невыполнении - «плохим», нельзя. Однако, для различных величин n и g найдены верхние и нижние границы, DWL и DWU, которые в ряде случаев позволяют с уверенностью судить о наличии (отсутствии) автокорреляции в модели. Правило:
1) При DW < 2:
а) если DW < DWL – делаем вывод о наличии положительной автокорреляции (с вероятностью 1-g);
б) если DW > DWU – делаем вывод об отсутствии автокорреляции (с вероятностью 1-g);
в) если DWL £ DW £ DWU – нельзя сделать никакого вывода;
2) При DW > 2:
а) если (4 – DW) < DWL – делаем вывод о наличии отрицательной автокорреляции (с вероятностью 1-g);
б) если (4 – DW) > DWU – делаем вывод об отсутствии автокорреляции (с вероятностью 1-g);
в) если DWL £ (4 – DW) £ DWU – нельзя сделать никакого вывода;
8. Гетероскедастичность остатков.
Возможные причины:
- ошибки в исходных данных;
- наличие закономерностей;
Обнаружение – возможны различные тесты. Наиболее простой:
(упрощенный тест Голдфелда – Куандта)
1) упорядочиваем выборку по возрастанию одной из объясняющих переменных;
2) формулируем гипотезу Н0: остатки гомоскедастичны
3) делим выборку приблизительно на три части, выделяя k остатков, соответствующих «маленьким» х и k остатков, соответствующих «большим» х (k»n/3);
4) строим модели парной линейной регрессии отдельно для «меньшей» и «большей» частей
5) оцениваем дисперсии остатков в «меньшей» (s21) и «большей» (s21) частях;
6) рассчитываем дисперсионное соотношение:

7) определяем табличное значение F-статистики Фишера с (k–m–1) степенями свободы числителя и (k - m - 1) степенями свободы знаменателя при заданном уровне значимости g
8) если дисперсионное соотношение не превышает табличное значение F-статистики (т. е., оно подчиняется F-распределению Фишера с (k–m–1) степенями свободы числителя и (k - m - 1) степенями свободы знаменателя), то гипотеза Н0 не отвергается - делаем вывод о гомоскедастичности остатков. Иначе – предполагаем их гетероскедатичность.
Метод устранения: взвешенный МНК.
Идея: если значения х оказывают какое-то воздействие на величину остатков, то можно ввести в модель некие «весовые коэффициенты», чтобы свести это влияние к нулю.
Например, если предположить, что величина остатка ei пропорциональна значению xi (т. е., дисперсия остатков пропорциональна xi2), то можно перестроить модель следующим образом:

т. е. перейдем к модели наблюдений

где

Таким образом, задача оценки параметров уравнения регрессии методом наименьших квадратов сводится к минимизации функции:

или

где
- весовой коэффициент.






