Волновая модель не работает

 

Проблема для классической теории, связанная с этими наблюдениями, состоит в том, что они совершенно несовместимы с волновым описанием света. Прежде всего, рассмотрим характер зависимости от интенсивности света. При волновом описании чем выше интенсивность света, тем больше амплитуда волны. Всякий, кто имел дело с морскими волнами, знает, что маленькие волны толкают слабо, а большие — сильно. Как показано на рис. 4.2, свет низкой интенсивности — это электромагнитная волна с малой амплитудой. Такая волна должна относительно слабо «толкать» электроны. И эти электроны должны вылетать из металла с относительно низкой скоростью. Напротив, свет высокой интенсивности ассоциируется с большой амплитудой волны. Такая волна должна сильно «толкать» электроны, и они должны вылетать из металла с высокой скоростью.

 

 

Рис. 4.2. Волновая картина зависимости фотоэлектрического эффекта от интенсивности света. Свет низкой интенсивности имеет малую амплитуду волны. Поэтому волна должна относительно слабо «толкать» электроны, и они будут вылетать из металла с низкой скоростью. Свет высокой интенсивности имеет большую амплитуду волны. Большая волна должна сильно «толкать» электроны, и они будут вылетать из металла с высокой скоростью

 

Доведём дело до полной ясности. Световая волна связана с колеблющимся электрическим полем. Электрическое поле меняется от положительного к отрицательному, снова к положительному и опять к отрицательному с частотой, соответствующей свету. Электрон в металле тянет в одном направлении, когда поле положительно, и тащит в другом направлении, когда поле отрицательно. Эти колебания электрического поля толкают электрон взад и вперёд. Согласно классической теории, если волна имеет достаточную амплитуду, она выбивает электрон из металла. Если амплитуда волны больше (интенсивность выше), она толкает электрон сильнее, и он должен вылететь из металла с более высокой скоростью. Однако наблюдается вовсе не это. Когда интенсивность света увеличивается, электроны вылетают из металла с той же самой скоростью, но при этом выбивается больше электронов.

Более того, когда свет смещается по цвету в сторону красного (то есть в сторону более длинных волн), электроны вылетают из металла с меньшей скоростью независимо от интенсивности. Хотя в волновой модели более длинноволновый свет менее энергичен, должна быть возможность, подняв интенсивность света, увеличить амплитуду волны и тем самым повысить скорость электронов, вылетающих из металла. Однако, как и с более голубыми волнами, повышение интенсивности увеличивает лишь число электронов, вылетающих из металла, но при заданном цвете (длине волны) все они вылетают с одинаковой скоростью.

Дополнительная проблема состоит в том, что, если свет достаточно сильно сместить в красную сторону спектра, электроны вообще перестают вылетать. Электроны обладают некоторой энергией связи с металлом, поскольку отрицательно заряженные электроны притягиваются к положительно заряженным ядрам атомов металла. (Атомы подробно обсуждаются, начиная с главы 9, а металлы — в главе 19.) Именно энергия связи удерживает электроны от вылетания из металла в отсутствие света. Согласно волновой картине, всегда должна быть возможность настолько поднять интенсивность света, сделав тем самым амплитуду колебаний электрического поля достаточно большой, чтобы превзойти энергию связи. Если вы стоите в полосе прибоя, то маленькая волна не собьёт вас с ног, но если волны становятся всё больше и больше, то в конце концов они окажутся достаточно велики для того, чтобы нарушить связь ваших ног с дном, заставив вас плыть. Однако в случае света, который достаточно сильно смещён в красную сторону, как бы ни была велика волна — связь электронов с металлом преодолеть невозможно.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: