Исходя из химического строения, гормоны делят на три группы

К первой группе относят пептидные и белковые гормоны. Пептидами являются, например, окситоцин, вазопрессин. Среди белковых гормонов имеются как простые белки (инсулин, глюкагон, соматотропин, пролактин и др.), так и сложные — гликопротеины (фоллитропин, лютропин).

 

Вторая группа — амины — объединяет гормоны, близкие по структуре аминокислотам — тирозину и триптофану (тиреоидные гормоны, адреналин норадреналин).

 

Третью группу составляют стероидные гормоны, которые являются производными холестерина. Среди стероидных гормонов — все половые гормоны и гормоны коры надпочечников — кортикостероиды.

 

Железы, секретирующие гормоны, имеются у позвоночных животных (в том числе у человека) и у высокоразвитых беспозвоночных — головоногих моллюсков, ракообразных, насекомых. Выделяемые ими гормоны поступают в кровь (или гемолимфу) и оказывают свое действие на определенные ткани-мишени, расположенные на значительном расстоянии от той железы, где они образуются. Отдельные группы клеток выделяют гормоны местного действия. Их часто называют гормоноидами, тканевыми гормонами, или парагормонами. К их числу относят гистамин, серотонин, брадикинин, простагландины и др. Гормоны, вырабатываемые нейросекреторными клетками нервной ткани, называют нейрогормонами. По месту образования различают гипофизарные, гипоталамические, половые гормоны, кортикостероиды (гормоны коры надпочечников), гормоны щитовидной железы (тиреоидные гормоны) и т. д. Все гормоны отличает высокая биологическая активность (они оказывают воздействие в очень низких концентрациях — 10–6–10–10 М) и специфичность (даже очень близкие по химической структуре аналоги гормонов не дают нужного эффекта).

Химическая структура

Исходя из химического строения, гормоны делят на три группы. К первой группе относят пептидные и белковые гормоны. Пептидами являются, например, окситоцин, вазопрессин. Среди белковых гормонов имеются как простые белки (инсулин, глюкагон, соматотропин, пролактин и др.), так и сложные — гликопротеины (фоллитропин, лютропин). Вторая группа — амины — объединяет гормоны, близкие по структуре аминокислотам — тирозину и триптофану (тиреоидные гормоны, адреналин, норадреналин). Третью группу составляют стероидные гормоны, которые являются производными холестерина. Среди стероидных гормонов — все половые гормоны и гормоны коры надпочечников — кортикостероиды.

Механизм действия гормонов

Гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) в определенное место — клеткам соответствующей ткани-мишени; что обеспечивается наличием у этих клеток высокоспецифических рецепторов — особых белков, с которыми связывается гормон (у каждого гормона свой рецептор). Ответ клеток на действие гормонов различной химической природы осуществляется по-разному. Тиреоидные и стероидные гормоны проникают внутрь клетки и связываются со специфическими рецепторами с образованием гормон-рецепторного комплекса. Этот комплекс взаимодействует непосредственно с геном, контролирующим синтез того или иного белка. Остальные гормоны взаимодействуют с рецепторами, находящимися на цитоплазматической мембране. После этого включается цепь реакций, приводящих к повышению внутри клетки концентрации так называемого вторичного посредника (например, ионов кальция или аденозинмонофосфата циклического), что, в свою очередь, сопровождается изменением активности определенных ферментов.

Биологическая роль гормонов

Гормоны контролируют основные процессы жизнедеятельности организма на всех этапах его развития с момента зарождения. Они влияют на все виды обмена веществ в организме, активность генов, рост и дифференцировку тканей, формирование пола и размножение, адаптацию к меняющимся условиям среды, поддержание постоянства внутренней среды организма (гомеостаз), поведение и многие другие процессы. Совокупность регулирующего воздействия различных гормонов на функции организма называется гормональной регуляцией (см. также Гуморальная регуляция).

У млекопитающих гормоны, как и выделяющие их железы внутренней секреции (эндокринные железы), составляют единую эндокринную систему. Она построена по иерархическому принципу и в целом контролируется нервной системой. Роль связующего звена между нервной и эндокринной системами выполняет гипоталамус, выделяющий нейрогормоны (рилизинг-факторы). Они регулируют (усиливают или тормозят) выделение гормонов гипофизом (тропных гормонов), которые в свою очередь контролируют образование гормонов периферическими железами. Например, тиреотропинрилизинг-фактор гипоталамуса стимулирует выделение тиреотропного гормона гипофизом, а он — выделение тиреоидных гормонов клетками щитовидной железы. Избыточное содержание какого-либо гормона в крови сопровождается остановкой его образования соответствующей железой, а недостаточное количество — усилением его выделения (механизм обратной связи).

Избыточное образование или недостаток того или иного гормона в организме человека приводит к эндокринным заболеваниям. Например, следствием недостатка гормонов щитовидной железы в организме являются кретинизм, микседема, а их избытка — базедова болезнь и тиреотоксикоз; нарушение функций поджелудочной железы может сопровождаться дефицитом гормона инсулина и, как следствие, сахарным диабетом.

Применение гормонов

Гормоны широко используются при заболеваниях, связанных с нарушением эндокринной системы: при недостатке или отсутствии в организме того или иного гормона (например, инсулина) или для усиления или подавления функции той или иной железы. Так, гормоны гипофиза адренокортикотропин и тиреотропин могут быть использованы для того, чтобы стимулировать работу периферических желез — собственно коры надпочечников и щитовидной железы. А так как гормоны периферических желез подавляют секрецию гормонов гипофиза, то кортикотропин, например, будет препятствовать образованию адренокортикотропного гормона.

Гормоны нашли широкое применение в акушерстве и гинекологии. Хорионический гонадотропин помогает при лечении бесплодия, окситоцин используется для усиления родовой деятельности, пролактин стимулирует секрецию молока после родов. Стероидные половые гормоны или их аналоги применяют при нарушениях в половой сфере, в качестве противозачаточных средств и т. д. При воспалительных процессах, аллергических заболеваниях, ревматоидном артрите и ряде других используются гормоны коры надпочечников. Гормоны, вырабатываемые вилочковой железой (тимусом) и стимулирующие созревание Т-лимфоцитов, применяют для лечения онкологических заболеваний, при нарушениях иммунитета.

Получение гормонов

Многие непептидные гормоны и низкомолекулярные пептидные гормоны получают с помощью химического синтеза. Полипептидные и белковые гормоны выделяют путем экстракции из желез домашнего скота с последующей очисткой. Разработана процедура получения некоторых гормонов (в том числе инсулина и гормона роста) с помощью методов генетической инженерии. Для этого ген, ответственный за синтез того или иного гормона, включают в геном бактерий, которые после этого приобретают способность синтезировать нужный гормон. Так как бактерии активно размножаются, за короткое время оказывается возможным наработать довольно значительные его количества.

 

ФИТОГОРМОНЫ (ростовые вещества), химические вещества, вырабатываемые в растениях и регулирующие их рост и развитие. Образуются главным образом в активно растущих тканях на верхушках корней и стеблей. К фитогормонам обычно относят ауксины, гиббереллины и цитокинины, а иногда и ингибиторы роста, напр. абсцизовую кислоту. В отличие о гормонов животных, менее специфичны и часто оказывают свое действие в том же участке растения, где образуются. Многие синтетические вещества обладают таким же действием, как природные фитогормоны.

ФИТОГОРМОНЫ (гормоны растений), органические вещества небольшого молекулярного веса, образуемые в малых количествах в одних частях многоклеточных растений и действующие на другие их части как регуляторы и координаторы роста и развития. Гормоны появляются у сложных многоклеточных организмов, в том числе растений, в качестве специализированных регуляторных молекул для осуществления важнейших физиологических программ, требующих координированной работы различных клеток, тканей и органов, нередко значительно удаленных друг от друга. Фитогормоны осуществляют биохимическую регуляцию — наиболее важную систему регуляции онтогенеза у многоклеточных растений. По сравнению с гормонами животных специфичность фитогормонов выражена слабее, а действующие концентрации, как правило, выше. В отличие от животных, у растений нет специализированных органов (желез), вырабатывающих гормоны.

Известно 5 основных групп фитогормонов, широко распространенных не только среди высших, но и низших многоклеточных растений. Это ауксины, цитокинины, гиббереллины, абсцизины и этилен. Каждая группа фитогормонов производит свое характерное действие, сходное у растений разных видов. Помимо пяти «классических» фитогормонов, для растений известны другие эндогенные вещества, в ряде случаев действующие подобно фитогормонам. Это брассиностероиды, (липо)олигосахарины, жасмоновая кислота, салициловая кислота, пептиды, полиамины, фузикокциноподобные соединения, а также фенольные ингибиторы роста. Вместе с фитогормонами их обозначают общим термином «природные регуляторы роста растений».

История фитогормонов

Экспериментальное исследование фитогормонов началось задолго до того, как был предложен сам термин «гормоны» (У. М. Бейлисс и Э. Г. Старлинг, 1905). В 1880 Ч. Дарвин в книге «О способности растений к движению» описал опыты по изучению изгибания проростков злака по направлению к свету. Было установлено, что свет воспринимается только самой верхушкой колеоптиля, тогда как изгиб происходит в нижележащей зоне, которая сама по себе нечувствительна к свету. Дарвин предположил, что какой-то химический стимул перемещается из верхушки до эффекторной (восприимчивой) зоны, вызывая в ней характерный изгиб растения. Дальнейшие исследования обнаруженного феномена привели в 1931-34 годах к открытию и установлению химической структуры основного ауксина растений — индолилуксусной кислоты (ИУК) (Ф. Кегль и др., Голландия, К. В. Тиманн (Thimann, США).

Однако гораздо раньше была определена химическая природа другого фитогормона: еще в 1901 в своих опытах на проростках гороха в Санкт-Петербургском университете Д. Н. Нелюбов показал, что газ этилен в чрезвычайно низких концентрациях нарушает нормальный рост растений. К 1930 был установлен широкий спектр влияний этилена на растения. В 1934 Р. Гейном (США) было окончательно доказано, что этилен синтезируется самим растением и регулирует многие важные физиологические реакции, т. е. отвечает всем критериям фитогормона.

В середине 1930-х годов учеными из Токийского университета (Т. Ябута и др.) из паразитического гриба Gibberella, поражение которым вызывало чрезмерное вытягивание проростков риса, были выделены первые гиббереллины; структура одного из них (гибберелловой кислоты) была полностью расшифрована английским ученым Б. Кроссом в 1954. Вскоре гиббереллины были обнаружены и в составе растений. В 1955 в США Ф. Скугом и др. из автоклавированного препарата ДНК спермы сельди был выделен и охарактеризован фактор, сильно стимулирующий деление растительных клеток в культуре, названный кинетином. В 1963 австралийский ученый Д. Лейтем выделил природный аналог кинетина из незрелых зерновок кукурузы (Zea), названный им зеатином. Впоследствии были найдены другие аналоги кинетина со сходной физиологической активностью, получившие общее название цитокинины. Открытием абсцизинов и их главного представителя — абсцизовой кислоты — завершилось длительное исследование природных ингибиторов роста растений (Ф. Уоринг и др.). Структура абсцизовой кислоты была предсказана К. Окумой, Ф. Эддикоттом и др. (США) и подтверждена прямым синтезом английским ученым Дж. Корнфорт в 1965. В России теория фитогормонов получила сильную поддержку в 1936-37 гг. благодаря работам М. Х. Чайлахяна в Институте физиологии растений (Москва) и выдвинутой им концепции гормона флоригена, вызывающего зацветание растений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: