Информационная модель физического мира 16 страница

Одна из философских основ всего персонала заключается в том, что смерть - это естественный конец жизни, что рано или поздно "все там будем", и что человек, выполнивший свой долг, свои желания, закончивший земные дела, переходит в следующий, кстати, неизбежный, этап бытия. Этот подход они и стараются передать пациентам хосписа.

К сожалению, чаще всего люди умирают, не находясь в таком благодушном состоянии. Причины, чаще всего, бывают следующие.

На первом месте стоит боль и страх перед болью. Врачи воздерживаются давать умирающим тяжелобольным обезболивающие препараты в достаточных дозах, опасаясь, что пациент привыкнет к наркотику (это умирающий-то?!). Поэтому подобные лекарства дают только тогда, когда терпеть боль ему уже невмоготу. Но сама боль создает еще и страх перед болью. А страх тоже требует успокоения наркотиками.

В Монреале в госпитале при университете Мак Гилл, где также открыто отделение для умирающих пациентов, проводили специальные исследования. Прежде всего, была разработана шкала для определения степени боли. А потом исследовались различные методы предотвращения боли. Оказалось, что эффективность болеутоляющих веществ во много раз выше, если больной находится в благоприятных душевных условиях. Отсюда и большая роль гипноза в создании чувства душевного спокойствия, которое и нарушается чаще всего болью. Поэтому всем (или почти всем) пациентам хосписа дают коктейль, состоящий из набора болеутоляющих средств, веществ, повышающих общий тонус и просветляющих рассудок. И тут оказалось неожиданным, что потребность в этом коктейле у больных не увеличивалась, а падала. Ведь приподнятое настроение меньше нуждается в допингах.

Вторая причина, усложняющая смерть, заключается в том, что человека угнетает, если он не может выполнять каких-то функций своего тела самостоятельно. И тут большую роль играет обслуживающий персонал. Всем своим видом няни показывают, что в том, что больной пользуется "судном" или "уткой", нет ничего особенного, что тело человека - лишь оболочка, которая может со временем выходить из строя, что главное - его дух, душа...

И, в-третьих, человеку очень трудно бывает примириться с утратой жизненных привычек - работы, увлечений, семьи. Поэтому очень важно заинтересовать умирающего пациента чем-то для него новым, направить на религиозные размышления, предложить поделиться его жизненным опытом - писать или диктовать мемуары, создать вокруг него атмосферу любви и спокойствия. Когда умирающий видит вокруг себя членов семьи, с которыми он, конечно, не раз ссорился, но которые сейчас, сидя возле кровати, не причитают, а просто выражают свою любовь, понимание и сочувствие умирающему, то у него часто появляется на лице выражение блаженства.

Правда, работа с умирающими требует напряжения всех душевных сил как от персонала хосписа, так и от близких умирающему людей. С ними также ведется работа.

Узнав о неизлечимой болезни, умирающий проходит несколько фаз ее восприятия. Сначала появляется мысль: "А может, это ошибка?". Потом надежда: "Авось, все пройдет". Тут в сознании больного обычно появляется торговля с Богом, с судьбой: "Вот если выживу, то не буду делать того-то, буду хорошим с тем-то". Наконец, приходит мысль: "Да, я скоро умру. Неважно, сколько времени я еще проживу, важно - как я проживу это время". И тут-то проявляется талант врачей хосписа, чтобы вселить в умирающего веру в то, что последние его дни могут быть очень содержательны.

Нужно ли приучать детей к мысли о смерти? Оказывается - да, нужно. Ведь когда малышу говорят про умершую бабушку, что та "уснула", а малыш видит, что бабушка, но крайней мере, из его жизни ушла, он часто начинает бояться засыпать - как бы тоже не уйти из жизни. Опыты показали, что дети гораздо более наблюдательны и сообразительны, чем об этом думают взрослые. Когда-то было принято не посвящать детей в тайну рождения. Однако сказки об аистах, версия "купили на базаре" и прочее ни к чему хорошему не привели, и сейчас детей принято посвящать в тайну деторождения раньше, чем они об этом узнают на улице.

А вот насчет смерти в этом отношении мнения расходятся. Родители одного мальчика, больного лейкемией, настаивали на том, чтобы ему не говорили о неизбежности ею скорой смерти. Врачи обязаны были выполнять волю родителей. И только когда у ребенка наступила предсмертная агония, причем сознание оставалось совершенно ясным, врач спросил:

- А если б тебе сказали, что ты скоро умрешь, что бы ты хотел сделать?

Мальчик ответил:

- Теперь слишком поздно. Я все равно не успею. - Заплакал и умер...

То, что вопросы умирания осмысливаются не только "снаружи" - врачами, но, так сказать, и "изнутри", самими пациентами, открыло много дополнительных деталей, например, помощь музыки в обретении душевного спокойствия. У умирающего восприятие ритма и мелодии гораздо чувствительнее, чем в повседневной жизни. Музыка помогает ему самовыразиться, найти себя. Одни мелодии доставляют больному наслаждение, другие неприятны, и вот по выбору той или иной музыки больным врач может судить о психическом складе и состоянии больного.

Работа и даже общение с умирающим требуют большой психической нагрузки. Прежде всего, у окружающих появляется "синдром выживших", синдром вины. Оказывается, почти у каждого где-то в душе звучит подленькая струнка: "А хорошо, что умирает он, а не я". Но так как умирает-то близкий, иногда любимый человек, звук этой струнки больно резонирует в душе...

Общение с умирающим, проявление к нему любви, терпимость к капризам, а иногда и оскорблениям, требуют колоссального напряжения душевных сил. Поэтому в хосписах персонал поддерживает друг друга, проводит между собой что-то вроде сеансов психотерапии, Все чувствуют круговую моральную поддержку и эту же поддержку оказывают близким умирающих и умерших. Работа в хосписах очень нелегкая, и часто люди там надолго не задерживаются. Однако в некоторых из подобных заведений удивительная стабильность кадров. Обслуживающий персонал - единое целое, вроде семьи. А объединяют этих людей Вера, Надежда и Любовь. Вера в то, что они делают нужное дело, надежда на то, что они могут облегчить страдания умирающих, и любовь как к каждому умирающему в отдельности, так и к человечеству в целом.

Оказывается, что в наш век прагматизма воскрешаются на научной основе старые забытые традиции. Ведь акт смерти был священным почти во всех существовавших религиях. К нему готовились, его обставляли торжественно. И смерти не боялись.

Отношение к ней сильно зависит и от национально-этнических традиций. У некоторых народов, населяющих Китай, по традиции старым людям дарят гроб. Владелец к нему привыкает и не боится перспективы оставить надоевший мир. В некоторых местах России поминки по покойнику заканчивались веселыми плясками и частушками.

То, что составляло одушевленное тело, становится действительно лишь конгломератом молекул. Химические превращения в нем идут лишь согласно второму закону термодинамики.

 

 

Глава 14. НАУЧНЫЙ МЕТОД

Научный метод, учит нас авторитетнейший международный научный журнал "Nature", есть такое "особое устройство", которое производит объективность и сдерживает естественное желание естествоиспытателей верить в свои идеи, часто ничего общего с истиной Природы не имеющие. История науки знает множество примеров подобных заблуждений. Одним из самых последних и ярчайших "Nature" считает эпизод с холодным термоядом.

Холодный термояд буквально "взорвался" в ходе взбудоражившей весь мир пресс-конференции, которую 23 марта 1989 года провели американский химик С. Понс и его английский учитель М. Флейшман. Они утверждали, что им удалось "запустить" термоядерную реакцию при... комнатной температуре. Однако это заявление не было подвергнуто принятому в научной среде рецензированию со стороны.

Тем не менее средства массовой информации стали подавать эту сенсацию как "открытие века". На авторов скромных критических заметок газета "Wall Street Jornal" обрушилась в своей редакционной статье, уверяя читателей, что "у нас принято на все новое реагировать категорически "нет". Поддавала время от времени жару "Salt Lake City Tribune", рассказывавшая об очередном успехе работавших в этом городе в Университете штата Юта Понса и Флейшмана. А журнал "News week" вынес на обложку: "Как обнаружили Понс и Флейшман, иногда попадают и сверхдальние выстрелы".

Естественным возбуждением были охвачены и многие вполне трезвые научные институты. Двум ученым удалось околдовать - другого слова не подберешь - руководство Университета штата Юта, а также Национальный исследовательский институт электроэнергии США. Подтверждения сыпались как из рога изобилия, причем что поражало, так это крайнее пренебрежение ученых к основам своей профессии: контролю и воспроизведению, оценке возможностей применяемой аппаратуры, проверке результатов перед их обнародованием и даже простой рутинной математической статистикой.

Ажиотаж возник благодаря "самозаявлению" в Юте, а также двум "солидным" подтверждениям из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако когда электрохимики из Техаса после пресс-конференции провели контрольные измерения не только с тяжелой, но и обыкновенной водой, выяснилось: повышенное выделение тепла было вызвано электролизом последней, поскольку термометр служил в качестве второго катода! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Так был зарегистрирован "выброс нейтронов".

Естественно, что когда за дело взялись солидные лаборатории, например того же Принстона, все встало на свои места. Обошлась эта проверка, как признавал тот же "Nature" в конце 1989 года, в 50 миллионов долларов. Гора родила мышь и шутку о разнице между химиками и физиками. Первые верят, что холодный термояд существует, поэтому защищаются от возможного потока высокоэнергичных нейтронов пластиковым колпаком. Физики же в него не верят, поэтому защищаются тоннами свинца.

Это, так сказать, в пику американским Химическому и Электрохимическому обществам, которые принимали только "результаты подтверждения". На следующий год А.Лэйн из Принстона издал книгу с характерным названием: "Слишком горячо, чтобы держать в руках". А недавно в Нью-Йорке вышла в издательстве "Рэндом хауз" книга Г.Тобса, который в свое время в критических тонах рассказал об удивительной карьере К.Руббиа, открывателя бозона, удостоенного в 1984 году Нобелевской премии по физике.

Тобс назвал свою книгу еще более определенно - "Плохая наука". И предпослал ей подзаголовок "Короткая жизнь, бурные времена холодного термояда". Ее рекомендуют в качестве поучительного чтения молодым ученым и студентам, чтобы они, не дай бог, не совершили в своей карьере подобной ошибки. И в данном случае ее сравнивают с физиологом, который кое-что узнает о функции того или иного органа по его патологии.

Да, действительно метод "экстирпации" - отрезания, например, мозжечка - может чему-то научить. Но изучение патологии порождает только "патологическое" знание, не имеющее ничего общего с истинным (в свое время никто не мог представить, что тот же мозжечок отвечает за функцию речи!).

Когда в конце 1989 года все дружно "похоронили" Понса и Флейшмана, никто, к сожалению, не задался вопросом, почему их заявление произвело такую сенсацию. А ведь стоило бы задуматься. Подобное открытие, если бы оно действительно состоялось, обещало миру избавление от кошмара будущих Чернобылей, а также избавило бы человечество от бесплодного полувекового ожидания термояда горячего, в который угроханы десятки, если не сотни миллиардов долларов (с тем же практически выходом, что и в ячейках Понса и Флейшмана). История науки полна примеров, когда рецензенты - по самым разным причинам - "рубили" работы одиночек, которые оказывались основополагающими.

Барбару Макклинток называли "сумасшедшей" за открытие "прыгающих генов". В 1983 году ей присудили Нобелевскую премию. О.Эйвери Нобелевскую не дали, потому что он утверждал, что веществом наших генов является ДНК. Вся наука вплоть до середины 50-х была убеждена (открытие состоялось в 1943 году), что ген состоит из белка! Г.Темин десять лет бился в одиночку, уверяя коллег, что у раковых вирусов имеется "обратное" копирование ДНК с "программы", записанной в РНК вируса. Никто ему не верил, но в 1975 году дали Нобелевскую премию.

Как же после этого доверять рецензентам? Например, тому же Р.Галло, который, проверяя работу француза Л.Монтанье, "присвоил" себе открытие вируса СПИДа? Между тем все можно изменить, переиначив условия рецензирования, при которых имя рецензента в отличие от имени автора часто оставалось неизвестным.

Если сделать наоборот, тогда все встанет на свои места. "Радетели" науки сразу же проявятся, а ее труженики начнут наконец-то нормально работать, не опасаясь вмешательства и влияния всяких не относящихся к научному содержанию статьи факторов. Кстати, в том же "Nature" довольно часто устраиваются дискуссии авторов статьи и их рецензентов. И ничего, наука не рушится...

Но вернемся к Понсу и Флейшману, которых, казалось бы, полностью изничтожили и обвинили во всех смертных грехах. Сравнительно недавно опубликовали свою новую статью, которая вышла в свет незадолго, а может, и одновременно с публикацией книги Тобса, которому они, кстати, отказались давать интервью,

Они уехали из США и работали во Франции на... японские деньги. Перед опубликованием последней статьи ученые - а никто в их квалификации до той злополучной пресс-конференции в марте 1989 года не сомневался, они пользовались заслуженным авторитетом в научном сообществе - подали в итальянский суд иск на "La Republica".

В октябре 1991 года журналист газеты Джованни Паччи обвинил Понса и Флейшмана в "подтасовке" научных результатов. Статья была подана в виде рецензии на книгу А.Кана "Фальшивые пророки". Паччи сравнил двух ученых с попами-расстригами, поскольку и те, и другие предают "храм истины".

Газете тогда пришлось опубликовать сердитые письма трех сотрудников миланского Института физики, которые тоже занимались холодным термоядом, Паччи пришлось оправдываться. Однако это не спасло "La Republica" от иска на 8 миллиардов лир (5 миллионов долларов). Для Италии это было в диковинку, поскольку там иски о нанесении морального ущерба средствами массовой информации вообще редкость.

Сейчас работу Понса и Флейшмана финансирует богатый "мозговой резервуар" под названием "Технова". Японцы полагают, что холодный термояд далеко не пустая затея. Не так давно они провели в Нагое представительную конференцию на эту тему. В ней приняли участие 320 ученых из многих стран мира.

Нагойская встреча была уже третьей по счету международной конференцией подобного рода. Флейшман считает, что экспериментальных данных достаточно для того, чтобы пересмотреть некоторые устоявшиеся воззрения относительно того, что происходит в атомных ядрах. Ему возражает, как и в книге А.Лэйна, Ф.Клоуз, профессор-физик Апплетоновской лаборатории им. Резерфорда: "Холодный термояд - это миф!"

И тем не менее. "Мы создаем, - считает Флейшман, - новую научную организацию, целью которой является наука и технология следующего века. Сегодняшняя наука - это наука консенсуса. Характер финансирования нынешних исследований подталкивает ученых браться только за "безопасные" работы. Что же это за наука, когда с самого начала должно быть известно, что получится в результате? Иначе не дадут гранта! Вот и приходится поэтому "шлифовать" известное уже знание, а не добывать новое. Все боятся ошибиться. Мы пытаемся изменить этот порядок".

И у них есть сторонники, которые считают, что оба ученых натолкнулись на новый и неизвестный еще природный феномен. Даже Ф.Клоуз вынужден был признать, что избыточное тепло действительно есть, но это чисто химический процесс, а не термояд.

Сегодня Флейшман заявляет, что ему и его коллегам удается создать условия, при которых атомы дейтерия начинают подчиняться волновым эффектам, При этом начинает высвобождаться ядерная энергия в виде тепла, причем в полном соответствии с теорией квантовых полей. "Теория хорошо разработана, но очень сложна, поэтому люди испытывают большие трудности при ее приложении к описанию конкретных физических явлений. Истинная проблема заключается в том, что эти люди не желают, чтобы она была доказана".

"Японцы проявили к нам и нашей работе интерес с самого начала. Из новых, разработанных после второй мировой войны, технологических подходов 70% открытий принадлежали английским ученым. Но мы так ни одно из них и не воплотили в металле, все вынуждены покупать за границей", - говорит Флейшман. А Понс добавляет: "Мы все еще обязаны дать полный отчет обществу о том, что нами сделано и как это произошло. Я к тому же лично горю желанием отомстить за Флейшмана. О нем сказано очень много несправедливого!"

М.Мак-Кубре, возглавляющий работы по холодному термояду в Институте электроэнергии, говорит, что у них тепла выделяется в 10 раз меньше, чему Понса и Флейшмана. У тех же - его в 100 раз больше сейчас, чем в самом начале 1989 года. Мак-Кубре определил по крайней мере три условия успеха, которые не соблюдались "проверяльщиками" в английском ядерном центре в Харуэлле.

Крупные ученые - под впечатлением последних достижений Понса и Флейшмана - согласны повторить свою проверку с соблюдением всех требований, предъявляемых к холодному термояду его авторами. Ближайшей целью Понса и Флейшмана является создание генератора мощностью 10 киловатт. Он не должен превышать по размерам обычного мазутного обогревателя дома. Ученые предполагают, что генератор будет выдавать "на гора" в 8-10 раз больше тепла, энергии, чем потреблять.

Понс и Флейшман никак не могут забыть взрыв в своей лаборатории в Университете штата Юта, когда в бетонном полу образовалась выемка диаметром более 10 см. Что это было? Они считают, что холодный термояд. Физики им не верят.

Флейшман спокойно воспринимает критику. Он бы только хотел, чтобы она была столь же научной, сколь и его подход к поискам ускользающей истины. "Физический истеблишмент категорически против нас. Не надо только забывать, что ядерная физика начиналась работами химиков. Физики могут очень многое потерять, если мы окажемся правы".


ПРИЛОЖЕНИЕ 1

 



ИНФОРМАЦИОННАЯ МОДЕЛЬ ФИЗИЧЕСКОГО МИРА

 

В русле декларируемой "методологии" моделирования гипотеза С.Берковича представляет особый интерес с нескольких точек зрения:

- предлагаемая модель позволяет с иных (более глубоких) позиций исследовать неизбежные странности микромира и существующие парадоксы современной физики;

- гипотеза исследует возможности осуществления связи между, казалось бы, явлениями разной природы в рамках единой модели;

- предложенный подход по-новому позволит посмотреть на информатику, возможности естественнонаучного "освоения информационных ресурсов";

- концепция наиболее ярко демонстрирует возможности самой методологии моделирования, как главного инструмента познавательного процесса.

Модель. Предположим, что существует маленький счетчик. Не важно, что считает этот прибор. Потому что ничего еще нет. Ни килограммов, ни сантиметров, ни вольт или ампер, ни просто элементарных частиц, которые подсчитываются современными приборами. Речь идет о счетчике вообще. Об идее счетчика. Некоей абстрактной сущности, которая ведет счет не материальных величин, а идеальных. Условно можно сказать, что идет счет обыкновенных целых чисел - один, два, три... и так до ста, или тысячи, или, например, до 255 - словом, до некоего целого числа Z, после чего счет начинается сначала. Для наглядности можно себе представить, что этот счетчик похож на часы. Стрелка обегает круг по циферблату и начинает считать сначала.

Далее пусть существует несколько точно таких же "часов", но показывающих разное время: одни впереди, допустим, на двадцать минут, а другие отстают, предположим, минут на сорок. Как в таком случае узнать, который час? Разумнее всего сопоставить показания всех "часов" и вычислить среднее, после чего на всех подвести стрелки. Подводить стрелки некому, но между "часами"-счетчиками есть информационная связь: каждый данный счетчик знает показания соседних и стремится подстроиться к ним. То есть если данный счетчик впереди своих соседей, то он замедляет бег стрелки, давая им возможность себя догнать, а если он отстает, то ускоряет, догоняя их. Если счетчиков немного, то их показания очень скоро выровняются и все они станут показывать одно и то же "время" (будут находиться в одной фазе). Но если таких счетчиков очень много, то полного выравнивания фаз не произойдет никогда: ведь пока данный счетчик подстраивается под своих соседей, те, в свою очередь, подстраиваются под других. А это значит, что по информационным сетям, которыми соединены счетчики, постоянно происходит обмен информацией, все время перемещается какая-то информационная активность.

Такова суть идеи, которую Беркович положил в основу своей модели физического мира. Она может быть выражена одной фразой: материальный мир - это динамика синхронизационной активности в сети информации, которой связаны между собою счетчики. Остальное - дело техники. Беркович составил уравнение, описывающее поведение этой сети, и приступил к исследованию его решений.

"Материя исчезла, остались одни уравнения", - когда-то негодовал В.И.Ленин по поводу гносеологических концепций Маха и Авенариуса. В уравнении Берковича материя тоже "исчезает", вернее, она оказывается не первичной субстанцией, а производным продуктом, возникающим в процессе передачи информации. Если его концепция в конечном счете подтвердится, то можно будет, перефразировав библейское выражение, сказать, что в начале было число!

Мы живем в мире, заполненном движущейся материей. Мы знаем, что Земля движется вокруг Солнца и вокруг своей оси. Ветер - это движение воздуха, волны и течения в океане или реке - это движение воды. Бегают или ползают животные, летают птицы, в горах происходят обвалы... Мы сами постоянно двигаемся - либо на собственных ногах, либо на изобретенных нами аппаратах: самолетах, автомашинах, велосипедах.

Между тем древнегреческий философ Зенон, проанализировав само понятие "движение", пришел к выводу, что оно невозможно. Движение внутренне противоречиво, ибо двигаться - значит быть в каком-то месте пространства и в то же время не быть в нем. Зенон считал, что движение "есть только название, данное целому ряду одинаковых положений, из которых каждое отдельно взятое есть покой". Взгляды Зенона представлялись абсурдными, они противоречат нашему повседневному опыту. Но почему же абсурдные взгляды, высказанные две с половиной тысячи лет назад, до сих пор не забыты? Ведь взгляды Зенона живы, они продолжают нас задевать. Не потому ли, что в этом "абсурде" все-таки что-то есть?

Согласно модели мира, предлагаемой Берковичем, в основе всего сущего лежит не движение материи, а передача информации. Прямая аналогия этому - световая реклама. На табло в определенном порядке вспыхивают и гаснут лампочки. Они неподвижны, но образуемый ими рисунок перемещается и создает иллюзию движения. "Бежит" по табло текст, "летит" чайка, низвергаются каскады воды, имитируя Ниагару... Все это лишь иллюзии, порожденные искусной работой светодизайнера. Так, может быть, Зенон прав: то, что мы считаем движением материи, есть всего лишь передача информации, включение и выключение в определенном порядке каких-то "лампочек"?

Что играет роль лампочек? Чтобы ответить на этот вопрос, Беркович вернулся к представлениям физиков конца прошлого века. Когда Максвелл открыл электромагнитное поле, физики не сомневались в том, что существует среда, по которой распространяются электромагнитные волны. Эту среду назвали эфиром. Однако обнаружить эфир не удавалось: у него не оказалось ни массы, ни заряда, ни сопротивления, ни других свойств, которые можно было бы зарегистрировать какими-нибудь приборами. В конце концов был поставлен знаменитый опыт Майкельсона, который показал, что свет движется с постоянной скоростью независимо от того, приближается ли к наблюдателю источник света или нет. Этот опыт перевернул многие представления. В частности, из него следовало, что гипотетический эфир не увлекается движущимся через него телом (как, например, увлекается воздух), но в то же время эфиру нельзя приписать такое свойство, когда увлечение движущимся сквозь него телом равно нулю.

Теория эфира завела науку в тупик. Гениальность Эйнштейна состояла именно в том, что он отбросил представления классической физики (включая и теорию эфира) и объяснил факты с совершенно иных позиций. С тех пор об эфире стараются не вспоминать. Между тем проблема осталась, ибо если нет эфира, то как же все-таки свет и иные электромагнитные сигналы движутся в бесконечном пространстве Вселенной? Физики сошлись на том, что таково свойство пространства. Но это лишь иная формулировка проблемы, а не ее решение.

Изучение работ Эйнштейна показывает, что, хотя он и отказался от использования эфира в своих построениях, но вовсе не отрицал его существования. Он лишь указал, что эфир "не обладает свойством движения". Гипотеза Берковича объясняет, что это значит: достаточно представить себе эфир в виде "лампочек", которые, оставаясь на месте, вспыхивают и гаснут в определенной последовательности. Вопрос, увлекается ли эта среда движущимся телом или не увлекается, бессмыслен, потому что никакие тела сквозь нее не движутся - перемещается лишь информация. Итак, нет никакого парадокса в том, что увлекаемость эфира невозможно описать какой-либо величиной, включая и нулевую. Это среда, "не обладающая свойством движения". Различие это фундаментально.

В рамках концепции Беркович дает объяснение как одни и те же единицы материи могут быть и частицами, и волнами. Электрон может вращаться вокруг ядра атома по нескольким орбитам. Восприняв дополнительную порцию энергии, он перескакивает на более удаленную орбиту; испустив квант энергии, наоборот, переходит на ближнюю. Однако физики до сих пор не могли ответить на вопрос, как происходит этот переход. Казалось бы, электрон должен перемещаться с орбиты на орбиту по какой-то траектории, однако уравнения квантовой механики дают другое: электрон как бы исчезает с одной орбиты и вновь появляется на другой. Модель Берковича показывает, как именно это происходит. Электрон действительно исчезает с одной орбиты и как бы воскресает на другой. В промежутке он существует не как частица, а только как волна. К этому можно добавить, что время трансформации всего 10-24 с.

Одна из групп решений уравнения графически выражается в виде множества спиралей. Если счет ускоряется, то активность вдоль спирали нарастает, а если замедляется, то убывает. При этом оказывается, что и нарастание, и убывание информации подчинены одним и тем же математическим законам экспоненты.

Среди особенностей этой кривой - то, что вверх она взмывает очень круто, а вниз опускается полого. Эта особенность соответствует одному из самых фундаментальных фактов микромира: колоссальному различию в массе заряженных элементарных частиц при равенстве абсолютной величины заряда. Отрицательно заряженная частица, электрон, имеет примерно в две тысячи раз меньшую массу, чем положительно заряженная частица - протон. Когда эти факты были установлены впервые, они сильно озадачили физиков. Впоследствии к ним привыкли, но причина различия в массе между электроном и протоном так и осталась необъясненной. Гипотеза Берковича дает отгадку: протону соответствует возрастание экспоненты, а электрону - убывание.

Если же представить себе такую конфликтную ситуацию, когда счетчику приходится и ускорять, и замедлять счет из-за противоположной информации, получаемой от соседних счетчиков, то графически она может быть выражена путем сложения возрастающей и убывающей экспонент. Получится кривая, соответствующая третьей из основных элементарных частиц - нейтрону. Становится ясно, почему нейтрон электрически нейтрален и почему масса у него чуть-чуть больше, чем у протона. Понятна и причина относительной неустойчивости нейтрона: в свободном состоянии он через некоторое время распадается на протон и электрон.

Правда, при распаде нейтрона выделяется еще одна частица, сверхмалая и электрически нейтральная - нейтрино. Откуда она берется? Беркович объясняет ее появление информационными взаимодействиями второго порядка.

До сих пор мы рассматривали такую ситуацию, когда данный счетчик подстраивается только к своим ближайшим соседям. Но он может взаимодействовать также и с соседями своих соседей, только степень воздействия здесь существенно более слабая. Такой обмен информацией, согласно выводам Берковича, описывается синусоидой. Ей и соответствует нейтрино.

Если пойти еще дальше, то можно убедиться, что должна существовать частица нейтрино-2, во много раз меньшая, чем нейтрино-1. И должно быть нейтрино-3, меньшее, чем нейтрино-2. Когда Беркович теоретически рассчитал существование этих супермалых частиц, он решил, что наткнулся на противоречие, которое опровергает его гипотезу. Однако, порывшись в литературе, он обнаружил, что физикам известны как раз три вида нейтрино, но второй и третий были открыты уже после того, как он сам отошел от физики (закончив МФТИ Беркович много лет занимался исследованиями в области информационных систем управления).




double arrow
Сейчас читают про: