Функции и отделы нервной системы

ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

Функции и отделы нервной системы

2. Структурно-функциональные элементы НС

3. Особенности распространения возбуждения в ЦНС

Центры нервной системы

Процессы торможения в ЦНС

Рефлекс и рефлекторная дуга. Виды рефлекса

Функции и отделы нервной системы

Организм представляет собой сложную высокоорганизованную систему, состоящую из функционально взаимосвязанных клеток, тканей, органов и их систем. Управление их функциями, а также их интеграцию (взаимосвязь) обеспечивает нервная система. НС осуществляет также связь организма с внешней средой, путем анализа и синтеза поступающей к ней разнообразной информации от рецепторов. Она обеспечивает движения и выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру. Кроме того, с функциями ЦНС связаны процессы, лежащие в основе психической деятельности человека (внимание, память эмоции, мышление и т.п.).

Таким образом, функции нервной системы:

• регулирует все процессы, протекающие в организме;

• осуществляет взаимосвязь (интеграцию) клеток, тканей, органов и систем;

• осуществляет анализ и синтез поступающей в организм информации;

• регулирует поведение;

• обеспечивает процессы, лежащие в основе психической деятельности человека.

 Согласно морфологическому принципу нервная система подразделяется на центральную (головной и спинной мозг) и периферическую (парные спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и ганглии, лежащие во всех отделах тела человека).

По функциональному принципу нервная система подразделяется на соматическую и вегетативную. Соматическая нервная система обеспечивает иннервацию главным образом органов тела (сомы) - скелетные мышцы, кожу и др. Этот отдел нервной системы связывает организм с внешней средой при помощи органов чувств, обеспечивает движение. Вегетативная нервная система иннервирует внутренние органы, сосуды, железы, в том числе эндокринные, гладкую мускулатуру, регулирует обменные процессы во всех органах и тканях. Вегетативная нервная система включает симпатический, парасимпатический и метасимпатический отделы.

2. Структурно-функциональные элементы НС

Основной структурно-функциональной единицей НС является нейрон с его отростками. Их функции заключаются в восприятии информации с периферии или от других нейронов, ее переработке и передаче на соседние нейроны или исполнительные органы. В нейроне различают тело (сому) и отростки (дендриты и аксон). Дендриты - многочисленные сильно ветвящиеся протоплазматические выросты вблизи сомы, по которым возбуждение проводится к телу нейрона. Их начальные сегменты имеют больший диаметр и лишены шипиков (выростов цитоплазмы). Аксон - единственный осево - цилиндрический отросток нейрона, имеющий длину от нескольких мкм до 1 м, диаметр которого относительно постоянен на всем его протяжении. Конечные участки аксона делятся на терминальные веточки, по которым передается возбуждение от тела нейрона к другому нейрону или рабочему органу.

Объединение нейронов в нервную систему происходит с помощью межнейрональных синапсов. 

Функции нейрона:

1. Восприятие информации (дендриты и тело нейрона).

2. Интеграция, хранение и воспроизведение информации (тело нейрона). Интегративная деятельность нейрона заключается во внутриклеточном преобразовании множества приходящих к нейрону гетерогенных возбуждений и формировании единой ответной реакции.

3. Синтез биологически активных веществ (тело нейрона и синаптические окончания).

4. Генерация электрических импульсов (аксонный холмик – основание аксона).

5. Аксонный транспорт и проведение возбуждения (аксон).

6. Передача возбуждений (синаптические окончания).

Существует несколько классификаций нейронов.

Согласно морфологической классификации нейроны различают по форме сомы. Выделяют нейроны зернистые, пирамидные, звездчатые нейроны и т.д. По числу отходящих от тела нейронов отростков выделяют униполярные нейроны (один отросток), псевдоуниполярные нейроны (Т- образно ветвящийся отросток), биполярные нейроны (два отростка), мультиполярные нейроны (один аксон и множество дендритов).

Функциональная классификация нейронов основана на характере выполняемой ими функции. Выделяют афферентные (чувствительные, рецепторные) нейроны (псевдоуниполярные), эфферентные (мотонейроны, двигательные) нейроны (мультиполярные) и ассоциативные (вставочные, интернейроны) нейроны (в большинстве мультиполярные).

Биохимическая классификация нейронов осуществляется с учетом природы вырабатываемого медиатора. Исходя из этого выделяют холинергические (медиатор ацетилхолин), моноаминергические (адреналин, норадреналин, серотонин, дофамин), ГАМКергические (гамма-аминомасляная кислота), пептидергические (субстанция Р, энкефалины, эндорфины, другие нейропептиды) и др. На основании этой классификации выделяют четыре основные диффузные модулирующие системы:

1 Адренергическая система берет начало в глубоком пятне моста и функционирует как «центр сигнала тревоги», который становится наиболее активным, когда появляются новые стимулы окружающей среды. Норадренергетические нейроны широко распространены по всей ЦНС и обеспечивают увеличение общего уровня возбуждения, инициируют вегетативные (симпатические) проявления стрессорной реакции.

2. Холинергические нейроны широко распространены в центральной нервной системе, особенно в базальных ядрах и стволе мозга. Холинергические нейроны участвуют в механизмах избирательного внимания к конкретной задаче и важны для обучения и памяти. Холинергические нейроны участвуют в патогенезе болезги Альцгеймера. Также расположены в спином мозге, обеспечивают передачу сигналов от мотонейронов к скелетным мышцам.

3. Серотонинергическая система берет начало в ядрах шва и варолиева моста. Серотонин является предшественником мелатонина, образующегося в эпифизе; может принимать участие в формировании эндогенных опиатов. Серотонин играет основную роль в регуляции настроения. С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой, суицидальном поведении. Избыток серотонина обычно вызывает панику. На механизмах блокирования обратного захвата серотонина из синаптической щели основаны антидепрессанты последнего поколения. Серотонинергические нейроны ядер шва занимают центральное место в контроле цикла сон-бодрствование, он инициирует фазу быстрого сна (фазу сновидений). Серотонинергическая система мозга участвует в регуляции сексуального поведения: повышение уровня серотонина в мозге сопровождается угнетением половой активности, а снижение его содержания ведет к ее повышению.

4. Дофаминергические нейроны широко распространены в ЦНС, играют важную роль в мозговой системе удовлетворения потребностей (системе удовольствия). Эта система лежит в основе привыкания к наркотикам (включая кокаин, амфетамины, экстази, алкоголь и никотин). В основе развития болезни Паркинсона лежит прогрессирующая дегенерация дофаминсодержащих пигментных нейронов черной субстанции и голубого пятна. Предполагается, что при шизофрении имеет место повышение активности дофаминовой системы мозга с увеличением выделения дофамина, агонисты дофамина типа амфетамина могут вызвать психозы, имеющие сходство с параноидной шизофренией. С обменом дофамина теснейшим образом связаны психомоторные процессы (исследовательское поведение, двигательные навыки).

5. Опиоидэргические нейроны вырабатывают β-эндорфин, энкефалин и другие эндогенные опиоидные пептиды, вызывающие чувство удовольствия, эйфория (выделяется при приятных телесных вкусовых, обонятельных и др. сенсорных ощущениях).

6. Глутаматэргические нейроны – наиболее распространенный возбуждающий нейротрансмиттер в нервной системе, особенно в нейронах мозжечка и спинного мозга (контролирует двигательные функции), вызывает в них сильную деполяризацию. Глутамат обладает привлекательным вкусом и запахом, входит в состав пищевых добавок (снеки, приправы).

7. Аспартатэргические нейроны – возбуждение в нейронах коры головного мозга, Аспартат входит в состав энергетических напитков. Вызывает обратимую деполяризацию спинальных мотонейронов,  как и глутамат, при введении вызывает судороги.

8. Тауринэргические нейроны – играют роль тормозящей системы, обеспечивают противосудорожные эффекты. Тормозящее постсинаптическое действие. Глицин-миметик в спинном и продолговатом мозге, в других отделах головного мозга – ГАМК-миметик. Таурин имеет привлекательный вкус и запах, содержится в животных белках, используется как пищевая добавка. Входит в состав энергетических напитков, кошачьего корма, детского и спортивного питания.

9. ГАМК-эргические нейроны – важнейшие элементы тормозной системы ЦНС.

10. Глицинэргические нейроны – проявляют неоднозначное действие. Связываясь с рецепторами, Вызывает гиперполяризацию постсинаптических мембран за счет увеличения проницаемости для Сl -. Одновременно глицин оказывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких как глутамат, и повышают выделение ГАМК. Но одновременно глицин способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата на соответствующих рецепторах мембраны нейронов. В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса.

Одной из составных частей ЦНС является нейроглия (глиальные клетки). Она составляет почти 90 % клеток НС и состоит из двух видов: макроглии, представленной астроцитами, олигодендроцитами и эпендимоцитами, и микроглии. Астроциты – крупные звездчатые клетки выполняют опорную и трофическую (питательную) функции. Астроциты обеспечивают постоянство ионного состава среды. Олигодендроциты формируют миелиновую оболочку аксонов ЦНС. Олигодендроциты за пределами ЦНС называют Шванновскими клетками, они принимают участие в регенерации аксона. Эпендимоциты выстилают желудочки головного мозга и спинномозговой канал (это полости, заполненные мозговой жидкостью, которую секретируют эпедимоциты). Клетки микроглии могут превращаться в подвижные формы, мигрировать по ЦНС к месту повреждений нервной ткани и фагоцитировать продукты распада. В отличие от нейронов, клетки глии не генерируют потенциал действия, но могут влиять на процессы возбуждения.

По гистологическому принципу в структурах НС можно выделить белое и серое вещество. Серое вещество – это кора головного мозга и мозжечка, различные ядра головного и спинного мозга, периферические (т.е. расположенные за пределами ЦНС) ганглии. Серое вещество образовано скоплениями тел нейронов и их дендритами. Отсюда следует, что оно отвечает за рефлекторные функции: восприятия и обработки поступающих сигналов, а также формирования ответа. Остальные структуры нервной системы образованы белым веществом. Белое вещество образовано миелинизированными аксонами (отсюда цвет и название), функция которых – проведение нервных импульсов.

 

3. Особенности распространения возбуждения в ЦНС

Возбуждение в ЦНС не только передается от одной нервной клетки к другой, но и характеризуется рядом особенностей. Это конвергенция и дивергенция нервных путей, явления иррадиации, пространственного и временного облегчения и окклюзии.

Дивергенция пути – это контактирование одного нейрона с множеством нейронов более высоких порядков.

Так, у позвоночных существует разделение аксона чувствительного нейрона, входящего в спинной мозг, на множество веточек (коллатералей), которые направляются к разным сегментам спинного мозга и в различные отделы головного мозга. Дивергенция сигнала наблюдается и у выходных нервных клеток. Так, у человека один мотонейрон возбуждает десятки мышечных волокон (в глазных мышцах) и даже их тысячи (в мышцах конечностей).

Многочисленные синаптические контакты одного аксона нервной клетки с большим числом дендритов нескольких нейронов являются структурной основой явления иррадиации возбуждения (расширение сферы действия сигнала). Иррадиация бывает направленной, когда возбуждением охватывается определенная группа нейронов, и диффузной. Пример последней – повышение возбудимости одного рецепторного участка (например, правой лапки лягушки) при раздражении другого (болевого воздействия на левую лапку).

         

Конвергенция – это схождение многих нервных путей к одним и тем же нейронам. Наиболее распространенной в ЦНС является мультисенсорная конвергенция, которая характеризуется взаимодействием на отдельных нейронах нескольких афферентных возбуждений различной сенсорной модальности (зрительной, слуховой, тактильной, температурной и т.д.).

Конвергенция многих нервных путей к одному нейрону делает этот нейрон интегратором соответствующих сигналов. Если речь идет о мотонейроне, т.е. конечном звене нервного пути к мускулатуре, говорят об общем конечном пути. Наличие конвергенции множества путей, т.е. нервных цепочек, на одной группе мотонейронов лежит в основе феноменов пространственного облегчения и окклюзии.

Пространственное и временное облегчение – это превышение эффекта одновременного действия нескольких относительно слабых (подпороговых) возбуждений над суммой их раздельных эффектов. Феномен объясняется пространственной и временной суммацией.

Окклюзия – это явление, противоположное пространственному облегчению. Здесь два сильных (сверхпороговых) возбуждения вместе вызывают возбуждение такой силы, которая меньше арифметической суммы этих возбуждений отдельно.

Причина окклюзии состоит в том, что эти афферентные входы в силу конвергенции отчасти возбуждают одни и те же структуры и поэтому каждый может создать в них почти такое же сверхпороговое возбуждение, как и вместе.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: