Свойства нервных центров

Нервные импульсы по афферентным путям поступают в нервные центры. Следует различать анатомическое и физиологическое понимание нервного центра.

Нервный центр с анатомической точки зрения – это совокупность нейронов, расположенных в определенном отделе центральной нервной системы.

Нервный центр с физиологической точки зрения – это сложное, функциональной объединение нескольких анатомических центров, расположенных на разных этапах центральной нервной системы – от спинного мозга до коры головного мозга – и обусловливающих за счет своей активности сложные рефлексы. В процессе функционирования нейроны, расположенные на более низких этажах центральной нервной системы, подчиняются по принципу субординации корректирующим влияниям вышерасположенных нервных центров.

Свойства нервных центров обусловлены:

1. Структурой нейронов, образующих центр.

2. Особенностями проведения нервных импульсов синапсом.

В настоящее время выделены следующие особенности проведения возбуждения в нервных центрах:

1. Одностороннее проведение возбуждения через н.ц. В нервных волокнах импульсы проводятся в обоих направлениях. В ЦНС возбуждение может распространяться только в одном направлении: с афферентного нейрона на эфферентный. Одностороннее проведение возбуждения обусловлено тем, что передача возбуждения возможна через синапс только в одном направлении – от нервного окончания, секретирующего медиатор, к постсинаптической мембране. В обратном направлении возбуждающий постсинаптический потенциал не распространяется.

2. Синаптическая задержка проведения возбуждения – она обусловлена более медленным проведением нервных импульсов через синапсы, так как затрачивается время на следующие процессы: выделение медиатора окончаниями аксона в ответ на пришедший нервный импульс; диффузию медиатора через синаптическую щель к постсинаптической мембране; возникновение возбуждающего постсинаптического потенциала под действием медиатора. Поэтому чем сложнее рефлекс и больше синапсов в рефлекторной его дуге, тем длиннее время рефлекса.

3. Иррадиация возбуждения. Под иррадиацией возбуждения понимают способность возбуждения широкой волной раз­ливаться по центральной нервной си­стеме от центра к центру.

4. Конвергенция. Схождение, или сужение,— особенность проведения возбуждения по нервным центрам противоположной иррадиации. Она обусловлена тем, что в центральной нервной системе афферентных путей в 4—5 раз больше, чем эфферентных. Поэтому к эфферентному нейрону возбуждение подходит по многим пу­тям.

5. Циркуляция нервных импульсов по замкнутым нейронным цепям. Нерв­ные импульсы от одного из нейронов, который пришел в возбужденное со­стояние, передаются как к другим нейронам, так и по коллатералям их аксонов вновь возвращаются на пер­вый нейрон, и таким образом возбу­ждение может очень длительно цир­кулировать в одном нервном центре, до тех пор, пока не наступит утомле­ние одного из синапсов или же ак­тивность нейронов будет блокирова­на торможением.

6. Инертность — способность нервных центров длительно сохранять в себе следы возбуждений.

7. Суммация возбуждения в нервных центрах: открыто в 1863 году Сеченовым. Существует два вида суммирования – временное и пространственное.

Временная суммация. Если к нейрону поступает одиночный импульс небольшой величины, то возникает возбуждающий постсинаптический потенциал (ВПСП) подпороговой величины, недостаточной для вызова ответной реакции. Если же к нейрону поступает серия таких последовательных быстрых импульсов и на возбуждающий постсинаптический потенциал (ВПСП) от предыдущих импульсов накладывается ВПСП возбуждающий постсинаптический потенциал от последующих – они суммируются, достигая порогового уровня и вызывают потенциал действия, возбуждение нейрона и ответную реакцию – временная суммация.

Пространственная суммация наблюдается при одновременном раздражении различных рецептивных полей раздражителем подпороговой силы, когда одновременно импульсы с этих полей по аксонам поступают к одному нейрону или нервному центру, в нейроне складывается и возникает возбуждающий постсинаптический потенциал пороговой силы, способный вызвать ответную реакцию.

8. Трансформация ритма и силы возбуждения - усиление или ослабление ритма или силы возбуждения, поступающего с периферии. Даже на одиночный импульс нерв­ные центры способны отвечать целой серией импульсов. Например, когда раздражают чувствительный (аффе­рентный) нерв одиночным импуль­сом, то мышца сокращается длитель­но, тетанически, потому что нервный центр превратил одиночный импульс в целый ряд импульсов. В нервных центрах может происходить и транс­формация силы импульсов: слабые импульсы усиливаются, а сильные ослабляются.

9. Последействие в ответ на однократный залп афферентных импульсов по эфферентным нейронам бегут серии импульсов, то есть продолжительность ответной реакции превышает длительность раздражения. Способность сохранять возбуждение в течение некоторого времени после прекращения действия раздражителя.

10. Облегчение – после каждого раздражителя в нервных центрах повышается возбудимость. Один поток импульсов как бы облегчает дейст­вие другого.

11. Окклюзия (закупорка) - снижение силы суммарной ответной реакции. Это обусловлено перекрытием синаптических полей, образуемых афферентными частями взаимодействующих рефлексов.  

12. Пластичность – функции нервных центров могут при изменении условий меняться. Изменение функций центров происходит в том случае, если рабочий орган, с которым данный центр связан, заменить другим (открыт в 1827 г. Флюрансом).

13. Тонус – состояние незначительного постоянного возбуждения, в котором находятся все нервные центры, имеет рефлекторный характер из-за кольцевого взаимодействия между нервными центрами и периферией.

14. Утомляемость – является результатом нарушения передачи возбуждения в межнейрональных синапсах в связи с уменьшением запасов медиатора и уменьшением чувствительности к нему постсинаптической мембраны, а также уменьшением энергетических ресурсов нервной клетки. Обмен веществ в н. ц. - нервные центры, в противопо­ложность нервному волокну, характеризуются высоким уровнем обмена веществ. При деятельности нервных центров обмен веществ в них еще более возрастает.

15. Доминанта - временное, достаточ­но стойкое возбуждение центра, за­нимающего господствующее положе­ние в центральной нервной системе, называют доминантой.

Торможение в ЦНС

    Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона.

Начало изучения торможения в центральной неравной системе связывают с выходом в свет работы И.М. Сеченова "Рефлексы головного мозга", в которой он показал возможность торможения двигательных рефлексов лягушки при химическом раздражении зрительных бугров головного мозга.

Торможение в центральной нервной системе — активный нервный процесс, проявляющийся в подавлении или ослаблении процесса возбуждения.

Центральное торможение (опыт И.М. Сеченова) — процесс, характеризующийся увеличением времени рефлекса или его полным отсутствием, возникающий при раздражении кристалликом поваренной соли поперечного разреза ствола мозга в области зрительных чертогов.

Классический опыт Сеченова заключается в следующем: у лягушки с перерезанным головным мозгом на уровне зрительных бугров определяли время сгибательного рефлекса при раздражении лапки серной кислотой. После этого на зрительные бугры накладывали кристаллик поваренной соли и снова определяли время рефлекса. Оно постепенно увеличивалось, вплоть до полного исчезновения реакции. После снятия кристаллика соли и промывания мозга физиологическим раствором время рефлекса постепенно восстанавливалось. Это позволило говорить о том, что торможение — активный процесс, возникающий при раздражении определенных отделов ЦНС.

Позже И.М. Сеченовым и его учениками было показано, что торможение в ЦНС может возникнуть при нанесении сильного раздражения на любые афферентные пути.

Периферическое торможение открыто братьями Вебер в 1845 г. Они установили, что раздражение блуждающего нерва тормозит работу сердца до полной его остановки.

    Торможение – врожденный процесс, постоянно совершающийся в течение индивидуальной жизни организма. Двигательные реакции можно затормозить, если в центрах встречаются возбуждения, идущие от двух рецептивных полей.

Рефлекс одергивания лапки лягушки на раздражение ее слабым раствором соляной кислоты тормозится при сильном сжимании другой лапки. Торможение наблюдается при наложении закрутки на губу лошади или щипцов на носовую перегородку быка. В этом случае сильное болевое раздражение тормозит двигательные реакции животных. В настоящее время принято выделять две формы торможения: первичное и вторичное.

Для возникновения первичного торможения необходимо наличие специализированных тормозных структур (тормозных нейронов и синапсов). Торможение в этом случае возникает первично, без предшествующего возбуждения. Примером первичного торможения может служить пре- и постсинаптическое торможение.

Пресинаптическое торможение развивается на аксоаксональных синапсах, образованных на пресинаптических окончаниях нейрона. В его основе лежит развитие медленной и длительной деполяризации пресинаптического окончания, что приводит к уменьшению или блокаде дальнейшего проведения возбуждения. В очаге деполяризации нарушается процесс распространения возбуждения и импульсы не могут пройти через зону деполяризации. Следовательно, не происходит выделения медиатора в синаптическую щель в достаточном количестве и не возбуждается постсинаптический нейрон.

Постсинаптическое торможение связано с гиперполяризацией постсинаптической мембраны под влиянием медиаторов, которые выделяются при возбуждении тормозных нейронов. Оно возникает на постсинаптической мембране аксосоматического или аксодендрического синапсов под влиянием активации тормозных нейронов. Постсипаптическое торможение развивается в случаях, когда тормозной медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что нервная клетка не может генерировать потенциал действия. Постсинаптическое торможение может быть обусловлено длительной деполяризацией или гиперполяризацией, возникающей в постсинаптической мембране вследствие взаимодействия медиатора с рецепторами, открывающими калиевые и хлорные каналы. Наиболее распространенными тормозными медиаторами являются гамма-аминомасляная кислота и глицин. Глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране другого нейрона. Действуя на рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для ионов СI-, при этом ионы хлора поступают в клетку согласно концентрационному градиенту, в результате чего развивается гиперполяризация. При действии гамма-аминомасляной кислоты на постсинаптическую мембрану постсинаптическое торможение развивается в результате входа ионов хлора в клетку или выхода ионов калия из клетки. Концентрационные градиенты ионов К+ в процессе развития торможения нейронов поддерживается Na++ -насосом, а ионов СI- — СI--насосом.

Возвратное торможение осуществляется вставочными тор­мозными клетками (клетками Реншоу). Аксоны мотонейронов ча­сто дают коллатерали (ответвления), оканчивающиеся на клетках Реншоу. Аксоны клеток Реншоу оканчиваются на теле или дендритах этого мотонейрона, образуя тормозные синапсы. Возбуж­дение, возникающее в мотонейроне, распространяется по прямо­му пути к скелетной мускулатуре, а также по коллатералям к тор­мозящему нейрону, который посылает импульсы к мотонейронам и тормозит их. Чем сильнее возбуждение мотонейрона, тем силь­нее возбуждаются клетки Реншоу и тем более интенсивно они оказывают свое тормозящее действие, что предохраняет нервные клетки от перевозбуждения. Этот вид торможения обеспечивает, например, поочередное сокращение и расслабление скелетных мышц — сгибателей и разгибателей, что необходимо для координации движений конечностей при ходьбе.

Поступательное торможение обусловлено тем, что на пути следования возбуждения встречается тормозной нейрон.

Для вторичного торможения не требуется специальных структур. Оно развивается в результате изменения функциональной активности обычных возбудимых нейронов. Вторичное торможение открыл Н.Е. Введенский. Он обнаружил пессимальное и парабиотическое торможение.

Пессимальное торможение возникает в том случае, если частота поступающих импульсов в нервные центры превышает их лабильность.

Парабиотическое торможение возникает при патологических состояниях, когда лабильность нервных центров значительно снижена и обычное возбуждение для центров является частым и сверхсильным.

Выделяют и третий тип вторичного торможения – торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны.

Значение процессов торможения. Торможение, наряду с возбуждением принимает активное участие в приспособлении организма к окружающей среде.

- играет важную роль в формировании условных рефлексов,

- освобождает центральную нервную систему от переработки менее значимой информации,

- обеспечивает координацию рефлекторных реакций,

- ограничивает распространение возбуждения на другие нервные структуры, предотвращая нарушения их нормального функционирования, следовательно, торможение выполняет охранительную функцию, защищая нервные центры от утомления и истощения.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: