Основные понятия теории систем

СОДЕРЖАНИЕ

 

   

1.Основные понятия теории систем. 10

1.1 Объект. 12

1.2 Внешняя среда. 12

1.3 Структура системы. 14

2. Структура системного анализа. 17

2.1 Анализ аналогов. 21

Заключение. 27

Список используемой литературы.. 28

 


 


Введение

  В настоящее время нет единства в определении понятия «система». В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основоположник теории систем Людвиг фон Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отношениях друг с другом и со средой. А. Холл определяет систему как множество предметов вместе со связями между предметами и между их признаками. Ведутся дискуссии, какой термин- «отношение» или «связь» - лучше употреблять.

    Позднее в определениях системы появляется понятие цели. Так, в «Философском словаре» система определяется как «совокупность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целостное единство». В последнее время в определение понятия системы наряду с элементами, связями и их свойствами, и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби.

     Вместе с тем всякий раз, когда ставится вопрос о технологиях системного анализа, сразу же возникают непреодолимые трудности, связанные с тем, что устоявшихся интеллектуальных технологий системного анализа в практике нет. Имеется некоторый опыт применения системного подхода в различных странах. Таким образом, налицо проблемная ситуация, характеризующаяся постоянно нарастающей потребностью технологического освоения системного анализа, которое разработано весьма недостаточно.

Ныне практически не встречаются научные и педагогические разработки в различных областях управления, в которых не уделялось бы внимание системному анализу. При этом его вполне справедливо рассматривают как эффективный метод изучения объектов и процессов управления. Однако практически отсутствует анализ «точек» приложения системной аналитики к решению конкретных управленческих задач и ощущается дефицит технологических схем такого анализа.

    В данной работе рассмотрены два вопроса:

· Основные понятия теории системы

· Структура системного анализа

 

Основные понятия теории систем

      Термины теория систем и системный анализ, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного истолкования. Причина этого факта заключается в динамичности процессов в области человеческой деятельности и в принципиальной возможности использовать системный подход практически в любой решаемой человеком задаче.

       Общая теория систем (ОТС) — научная дисциплина, изучающая самые фундаментальные понятия и аспекты систем. Она изучает различные явления, отвлекаясь от их конкретной природы и основываясь лишь на формальных взаимосвязях между различными составляющими их факторами и на характере их изменения под влиянием внешних условий, при этом результаты всех наблюдений объясняются лишь взаимодействием их компонентов, например характером их организации и функционирования, а не с помощью непосредственного обращения к природе вовлечённых в явления механизмов (будь они физическими, биологическими, экологическими, социологическими, или концептуальными)

       При системном подходе объект исследования представляется как система. Само понятие система может быть относимо к одному из методологических понятий, поскольку рассмотрение объекта исследуется как система или отказ от такого рассмотрения зависит от задачи исследования и самого исследователя.

      Существует много определений системы.

Система есть комплекс элементов, находящийся во взаимодействии.

       Система — это множество объектов вместе с отношениями этих объектов.

       Система — множество элементов, находящихся в отношениях или связях друг с другом, образующая целостность или органическое единство (толковый словарь)

Термины «отношение» и «взаимодействие» используются в самом широком смысле, включая весь набор родственных понятий таких как ограничение, структура, организационная связь, соединение, зависимость и т.д.

Система — это полный, целостный набор элементов (компонентов), взаимосвязанных и взаимодействующих между собой так, чтобы могла реализоваться функция системы. Исследование объекта как системы предполагает использование ряда систем представлений (категорий) среди которых основными являются:

Структурное представление связано с выделением элементов системы и связей между ними.

Функциональные представление систем — выделение совокупности функций (целенаправленных действий) системы и её компонентов направленное на достижение определённой цели.

  Макроскопическое представление — понимание системы как нерасчленимого целого, взаимодействующего с внешней средой.

  Микроскопическое представление основано на рассмотрении системы как совокупности взаимосвязанных элементов. Оно предполагает раскрытие структуры системы.

   Иерархическое представление основано на понятии подсистемы, получаемом при разложении (декомпозиции) системы, обладающей системными свойствами, которые следует отличать от её элемента — неделимого на более мелкие части (с точки зрения решаемой задачи). Система может быть представлена в виду совокупностей подсистем различных уровней, составляющую системную иерархию, которая замыкается снизу только элементами.

       Процессуальное представление предполагает понимание системного объекта как динамического объекта, характеризующегося последовательностью его состояний во времени.

Рассмотрим определения других понятий, тесно связанных с системой и ее характеристиками.

      1.1 Объект

      Объектом познания является часть реального мира, которая выделяется и воспринимается как единое целое в течение длительного времени. Объект может быть материальным и абстрактным, естественным и искусственным. Реально объект обладает бесконечным набором свойств различной природы. Практически в процессе познания взаимодействие осуществляется с ограниченным множеством свойств, лежащих в приделах возможности их восприятия и необходимости для цели познания. Поэтому система как образ объекта задаётся на конечном множестве отобранных для наблюдения свойств.

      1.2 Внешняя среда

      Понятие «система» возникает там и тогда, где и когда мы материально или умозрительно проводим замкнутую границу между неограниченным или некоторым ограниченным множеством элементов. Те элементы с их соответствующей взаимной обусловленностью, которые попадают внутрь, — образуют систему.

Те элементы, которые остались за пределами границы, образуют множество, называемое в теории систем «системным окружением» или просто «окружением», или «внешней средой». Из этих рассуждений вытекает, что немыслимо рассматривать систему без ее внешней среды. Система формирует и проявляет свои свойства в процессе взаимодействия с окружением, являясь при этом ведущим компонентом этого воздействия.

      Всякая система может рассматриваться, с одной стороны, как подсистема более высокого порядка (надсистемы), а с другой, как надсистема системы более низкого порядка (подсистема). Например, система «производственный цех» входит как подсистема в систему более высокого ранга — «фирма». В свою очередь, надсистема «фирма» может являться подсистемой «корпорации». Обычно в качестве подсистем фигурирует более или менее самостоятельные части систем, выделяемые по определённым признакам, обладающие относительной самостоятельностью, определённой степенью свободы.

      Компонент — любая часть системы, вступающая в определённые отношения с другими частями (подсистемами, элементами).

Элементом системы является часть системы с однозначно определёнными свойствами, выполняющие определённые функции и не подлежащие дальнейшему разбиению в рамках решаемой задачи (с точки зрения исследователя).

Понятие элемент, подсистема, система взаимопреобразуемы, система может рассматриваться как элемент системы более высокого порядка (метасистема), а элемент при углубленном анализе, как система. То обстоятельство, что любая подсистема является одновременно и относительно самостоятельной системой приводит к 2 аспектам изучения систем: на макро- и микроуровнях.

При изучение на макроуровне основное внимание уделяется взаимодействию системы с внешней средой. Причём системы более высокого уровня можно рассматривать как часть внешней среды. При таком подходе главными факторами являются целевая функция системы (цель), условия её функционирования. При этом элементы системы изучаются с точки зрения организации их в единое целое, влияние на функции системы в целом.

На микроуровне основными становятся внутренние характеристики системы, характер взаимодействия элементов между собой, их свойства и условия функционирования.

Для изучения системы сочетаются оба компонента.

      1.3 Структура системы.

      Под структурой системы понимается устойчивое множество отношений, которое сохраняется длительное время неизменным, по крайней мере в течение интервала наблюдения. Структура системы опережает определенный уровень сложности по составу отношений на множестве элементов системы или что эквивалентно, уровень разнообразий проявлений объекта.

     Связи — это элементы, осуществляющие непосредственное взаимодействие между элементами (или подсистемами) системы, а также с элементами и подсистемами окружения.

      Связь — одно из фундаментальных понятий в системном подходе. Система как единое целое существует именно благодаря наличию связей между ее элементами, т.е., иными словами, связи выражают законы функционирования системы. Связи различают по характеру взаимосвязи как прямые и обратные, а по виду проявления (описания) как детерминированные и вероятностные. Прямые связи предназначены для заданной функциональной передачи вещества, энергии, информации или их комбинаций — от одного элемента к другому в направлении основного процесса.

Обратные связи, в основном, выполняют осведомляющие функции, отражая изменение состояния системы в результате управляющего воздействия на нее. Открытие принципа обратной связи явилось выдающимся событием в развитии техники и имело исключительно важные последствия. Процессы управления, адаптации, саморегулирования, самоорганизации, развития невозможны без использования обратных связей.

Рис. 1 — Пример обратной связи

     С помощью обратной связи сигнал (информация) с выхода системы (объекта управления) передается в орган управления. Здесь этот сигнал, содержащий информации о работе, выполненной объектом управления, сравнивается с сигналом, задающим содержание и объем работы (например, план). В случае возникновения рассогласования между фактическим и плановым состоянием работы принимаются меры по его устранению.

        Основными функциями обратной связи являются:

· противодействие тому, что делает сама система, когда она выходит за установленные пределы (например, реагирование на снижение качества);

· компенсация возмущений и поддержание состояния устойчивого равновесия системы (например, неполадки в работе оборудования);

· синтезирование внешних и внутренних возмущений, стремящихся вывести систему из состояния устойчивого равновесия, сведение этих возмущений к отклонениям одной или нескольких управляемых величин (например, выработка управляющих команд на одновременное появление нового конкурента и снижение качества выпускаемой продукции);

     Детерминированная (жесткая) связь, как правило, однозначно определяет причину и следствие, дает четко обусловленную формулу взаимодействия элементов. Вероятностная (гибкая) связь определяет неявную, косвенную зависимость между элементами системы. Теория вероятности предлагает математический аппарат для исследования этих связей, называемый «корреляционными зависимостями».

        Критерии — признаки, по которым производится оценка соответствия функционирования системы желаемому результату (цели) при заданных ограничениях.

        Эффективность системы — соотношение между заданным (целевым) показателем результата функционирования системы и фактически реализованным. Функционирование любой произвольно выбранной системы состоит в переработке входных (известных) параметров и известных параметров воздействия окружающей среды в значения выходных (неизвестных) параметров с учетом факторов обратной связи.

Рис.2 — Функционирование системы

Вход — все, что изменяется при протекании процесса (функционирования) системы.

Выход — результат конечного состояния процесса.

Процессор — перевод входа в выход.

Система осуществляет свою связь со средой следующим образом.

Вход данной системы является в то же время выходом предшествующей, а выход данной системы — входом последующей.           Таким образом, вход и выход располагаются на границе системы и выполняют одновременно функции входа и выхода предшествующих и последующих систем.

Управление системой связано с понятиями прямой и обратной связи, ограничениями.

Обратная связь — предназначена для выполнения следующих операций:

· сравнение данных на входе с результатами на выходе с выявлением их качественно-количественного различия;

· оценка содержания и смысла различия;

· выработка решения, вытекающего из различия;

· воздействие на ввод.

Ограничение — обеспечивает соответствие между выходом системы и требованием к нему, как к входу в последующую систему — потребитель. Если заданное требование не выполняется, ограничение не пропускает его через себя. Ограничение, таким образом, играет роль согласования функционирования данной системы с целями (потребностями) потребителя.

     Определение функционирования системы связано с понятием «проблемной ситуации», которая возникает, если имеется различие между необходимым (желаемым) выходом и существующим (реальным) входом.

Проблема — это разница между существующей и желаемой системами. Если этой разницы нет, то нет и проблемы.

Решить проблему — значит скорректировать старую систему или сконструировать новую, желаемую.

        2. Структура системного анализа

      Общий подход к решению проблем может быть представлен как цикл.

Рис.3 — Общий подход к решению проблем

      При этом в процессе функционирования реальной системы выявляется проблема практики как несоответствие существующего положения дел требуемому. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой физической системы позволяет провести оценку степени снятия проблемы практики и принять решение на функционирование модернизированной (новой) реальной системы.

При таком представлении становится очевидным еще один аспект определения системы: система есть средство решения проблем.

Основные задачи системного анализа могут быть представлены в виде трехуровневого дерева функций.

Рис. 4 — Основные задачи системного анализа

      На этапе декомпозиции, обеспечивающем общее представление системы, осуществляются: Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

     Выделение системы из среды (разделение на систему/«не систему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

      Глубина декомпозиции ограничивается. Декомпозиция должна прекращаться, если необходимо изменить уровень абстракции — представить элемент как подсистему. Если при декомпозиции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функционирования в виде «черного ящика», то в этом случае произошло изменение уровня абстракции. Это означает выход за пределы цели исследования системы и, следовательно, вызывает прекращение декомпозиции.

      В автоматизированных методиках типичной является декомпозиция модели на глубину 5-6 уровней. На такую глубину декомпозируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их детальное описание дает ключ к секретам работы всей системы.

     В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.

     Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализации. Поэтому осуществляется формирование нескольких вариантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

      Рассмотрим некоторые наиболее часто применяемые стратегии декомпозиции.

      Функциональная декомпозиция. Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием разбиения на функциональные подсистемы служит общность функций, выполняемых группами элементов.

      Декомпозиция по жизненному циклу. Признак выделения подсистем — изменение закона функционирования подсистем на разных этапах цикла существования системы «от рождения до гибели». Рекомендуется применять эту стратегию, когда целью системы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

       Декомпозиция по физическому процессу. Признак выделения подсистем — шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полезна при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию следует, только если целью модели является описание физического процесса как такового.

         Декомпозиция по подсистемам (структурная декомпозиция). Признак выделения подсистем — сильная связь между элементами по одному из типов отношений (связей), существующих в системе (информационных, логических, иерархических, энергетических и т.п.). Силу связи, например, по информации можно оценить коэффициентом информационной взаимосвязи подсистем k = N / N0, где N — количество взаимоиспользуемых информационных массивов в подсистемах, N0 — общее количество информационных массивов. Для описания всей системы должна быть построена составная модель, объединяющая все отдельные модели. Рекомендуется использовать разложение на подсистемы, только когда такое разделение на основные части системы не изменяется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.

На этапе анализа, обеспечивающем формирование детального представления системы, осуществляются:

· Функционально-структурный анализ существующей системы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функционирования элементов, алгоритмов функционирования и взаимовлияний подсистем, разделение управляемых и неуправляемых характеристик, задание пространства состояний Z, задание параметрического пространства Т, в котором задано поведение системы, анализ целостности системы, формулирование требований к создаваемой системе.

· Морфологический анализ — анализ взаимосвязи компонентов.

· Генетический анализ — анализ предыстории, причин развития ситуации, имеющихся тенденций, построение прогнозов.

      2.1 Анализ аналогов.

      Анализ эффективности (по результативности, ресурсоемкости, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и формирование критериев эффективности, непосредственно оценивание и анализ полученных оценок. Формирование требований к создаваемой системе, включая выбор критериев оценки и ограничений.

     Этап синтеза системы, решающей проблему, представлен в виде упрощенной функциональной диаграммы на рисунке. На этом этапе осуществляются:

· Разработка модели требуемой системы (выбор математического аппарата, моделирование, оценка модели по критериям адекватности, простоты, соответствия между точностью и сложностью, баланса погрешностей, многовариантности реализаций, блочности построения).

· Синтез альтернативных структур системы, снимающей проблему.

· Синтез параметров системы, снимающей проблему.

· Оценивание вариантов синтезированной системы (обоснование схемы оценивания, реализация модели, проведение эксперимента по оценке, обработка результатов оценивания, анализ результатов, выбор наилучшего варианта).

Рис.5 — Упрощенная функциональная диаграмма этапа синтеза системы, решающей проблему

        Оценка степени снятия проблемы проводится при завершении системного анализа.

Наиболее сложными в исполнении являются этапы декомпозиции и анализа. Это связано с высокой степенью неопределенности, которую требуется преодолеть в ходе исследования.

        Формирование общего представления системы

     Стадия 1. Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных предметных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или другим понятиям (выход производства — продукция (какая?), выход системы управления — командная информация (для чего? в каком виде?), выход автоматизированной информационной системы — сведения (о чем?) и т.д.).

     Стадия 2. Выявление основных функций и частей (модулей) в системе. Понимание единства этих частей в рамках системы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимущественно последовательного или параллельного характера соединения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системообразующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

     Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением — выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводятся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

     Стадия 4. Выявление основных элементов «несистемы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информационные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определяются элементы «несистемы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к пониманию структуры и особенностей функционирования системы. В целом данная стадия позволяет лучше уяснить главные функции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

     Стадия 5. Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохастических систем).

Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности модулей, связанных входами-выходами.

     Стадией 6 заканчивается формирование общих представлений о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубокого изучения, улучшения, управления, то нам придется пойти дальше по спиралеобразному пути углубленного исследования системы.

Формирование детального представления системы

     Стадия 7. Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в системе. Ранжирование элементов и связей по их значимости.

     Стадия 8. Учет изменений и неопределенностей в системе. Здесь исследуются медленное, обычно нежелательное изменение свойств системы, которое принято называть «старением», а также возможность замены отдельных частей (модулей) на новые, позволяющие не только противостоять старению, но и повысить качество системы по сравнению с первоначальным состоянием. Такое совершенствование искусственной системы принято называть развитием. К нему также относят улучшение характеристик модулей, подключение новых модулей, накопление информации для лучшего ее использования, а иногда и перестройку структуры, иерархии связей.

Основные неопределенности в стохастической системе считаются исследованными на стадии 5. Однако недетерминированность всегда присутствует и в системе, не предназначенной работать в условиях случайного характера входов и связей. Добавим, что учет неопределенностей в этом случае обычно превращается в исследование чувствительности важнейших свойств (выходов) системы. Под чувствительностью понимают степень влияния изменения входов на изменение выходов.

     Стадия 9. Исследование функций и процессов в системе в целях управления ими. Введение управления и процедур принятия решения. Управляющие воздействия как системы управления. Для целенаправленных и других систем с управлением данная стадия имеет большое значение. Основные управляющие факторы были уяснены при рассмотрении стадии 3, но там это носило характер общей информации о системе. Для эффективного введения управлений или изучения их воздействий на функции системы и процессы в ней необходимо глубокое знание системы.

Заключение

     Системный анализ представляется в виде некоторого множества более конкретных его разновидностей. Это множество «простых» системных подходов можно представить в виде матрицы, в каждой ячейке которой находится один из частных методов.

      Системный анализ - это сложная наука, которая находится в процессе становления, обретения своей системы, представленной матрицей системного анализа.

       В результате прохождения данной практики били получены навыки по теории системы, и рассмотрен вопрос структуры системного анализа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: