Измерительные преобразователи

Измерительными преобразователями (ИП) называются устройства, предназначенные для преобразования разного рода не электрических величин в электрические сигналы.

Основные параметры измерительных преобразователей

Градуировочная характеристика ИП это зависимость между входной и выходной величинами

Коэффициентом преобразования называется отношение сигнала на выходе измерительного преобразователя , к изменению сигнала на входе . (Определено ГОСТ 16263-70), .

Диапазон преобразования это область изменения измеряемой величины, для которой нормированы допускаемые погрешности преобразователя (абсолютная и относительная).

По назначению ИП делятся на преобразователи механических, тепловых, химических, магнитных, биологических и других физических величин.

По принципу действия ИП делятся на генераторные и параметрические.

Краткая классификация измерительных преобразователей

по принципу действия

Генераторные Параметрические
Электромагнитные
Тахогенераторы Индуктивные и магнитоупругие
Тепловые
Термопары Терморезисторы
Оптические
Фотоэлемент Фоторезистор, фотодиод, и.д.

В качестве примера рассмотрим электромагнитные ИП, а именно тахогенераторы.

Тахогенераторы применяются для измерения скорости вращения объекта. Используются в устройствах электропривода, в транспортных средствах, станкостроении и пр. Тахогенераторы бывают с подвижными и неподвижными катушками. Общее устройство показано на рисунке.

В соответствии с ГОСТ 18303-72 выходное напряжение тахогенераторов определяется как , где k- статический коэффициент тахогенератора.

Однако значение выходного напряжения должно быть скорректировано с учетом падения напряжения в цепи якоря и на щеточном контакте ТГ.

;

где Uщ - падение напряжения на щетках, - сопротивление цепи якоря, - сопротивление измерительной цепи.

График, иллюстрирующий функцию (реальную и идеальную) показан ниже.

В тахогенераторах переменного тока, которые в лекциях не рассматриваются, выходная ЭДС равна:

;

где Ф - основной поток, p - число пар полюсов, n - частота вращения машины.

Погрешность измерительных тахогенераторов составляет 0.2….0.5%

Оптические преобразователи

Оптические преобразователи, как правило, построены на использовании явления фотоэффекта. По физической сущности различают два типа фотоэффекта – внутренний и внешний.

Внутренний фотоэффект – явление, происходящее внутри кристаллической решетки твердого тела при воздействии светового потока. При этом происходит изменение энергетического состояния носителей зарядов, приводящее к их концентрации и перераспределению внутри кристалла. Этот тип фотоэффекта характерен только для полупроводников и диэлектриков. Внешний фотоэффект состоит в эмиссии электронов под действием светового потока. Рассмотрим основные характеристики фотоэлектрических преобразователей – световую, спектральную и вольтамперную.

 
 


На рисунке представлены зависимости, характерные для фоторезистора (Фр), фототранзистора (Фт), фотодиода (Фд) и фотоэлемента (Фэ).

Iф- фототок, Фс- световой поток, S- чувствительность полупроводникового прибора, l- длина волны падающего светового потока. К измерительным преобразователям относятся также математические устройства. Например, устройство сложения и вычитания сигналов. Структурные схемы этих устройств показаны на рис.

D- датчик, УС- устройство сложения, УВ- устройство вычитания.

Преобразователь реализует следующее уравнение .

Апроксимирующий преобразователь

Преобразователь заменяет нелинейную функцию изменения входного сигнала Uвх рядом линейных функций. Принцип действия и схема апроксимирующего преобразователя показаны на рис.

В преобразователе используется свойство вольтамперной характеристики стабилитрона. Если стабилитроны VD1…VD3 подобрать таким образом, чтобы их напряжения пробоя соответствовали значениям соответственно U1…U3, тогда получится характеристика вход – выход показанная на рисунке.

Датчики неэлектрических величин

Для электрических измерений не электрических величин применяются специальные датчики. Принцип их действия основан на различных физических явлениях. Основной квалификационной характеристикой является заложенный физический принцип измерения и построения датчиков.

Резистивные датчики – преобразуют измеряемую величину в омическое сопротивление. Наиболее часто такие датчики применяются для измерения перемещений, для измерения уровня жидкости и пр. На первом этапе измеряемая величина преобразуется в перемещение движка переменного резистора.

При этом R1+R2=R0. Если обозначить Х- угловое или линейное перемещение движка тогда: . Резистивные преобразователи применяются в системах, где прилагаемое усилие ³10-2 Н. Величина перемещения ³2 мм. Частота питания £5 Гц.

Общий вид и рабочие характеристики резистивного датчика показаны на рис.

Тензодатчики – используют для исследования механических напряжений.

Простейший тензодатчик представляет из себя пленку с наклеенной на нее проволокой очень маленького диаметра 0.02…0.03 мм. Ширина наклейки – а; Длина проволоки – l. Датчик крепится к исследуемой поверхности. При деформациях изменяется длина провода и, следовательно его сопротивление. По этим изменениям судят о деформациях объекта. Рисунок датчика приведен ниже.

Пьезорезистивные преобразователи сил давления и деформации

Устройство датчика следующее: между металлизированными обкладками находится пьезочувствительный элемент. Если приложить силу к обкладкам, сопротивление элемента будет изменяться (на практике это изменения бывают в несколько раз). По изменению сопротивления судят о приложенной силе или деформации. Устройство датчика показано на рисунке.

Размеры датчика: высота <5мм, площадь до 10 см2. Статическое сопротивление Rстат=10…108 Ом.

Электромагнитные датчики перемещения и деформаций

Принцип действия этих датчиков основан на взаимодействии магнитных потоков. О величине перемещения или деформации судят по изменению тока в катушке индуктора. Различные схемы электромагнитных датчиков приведены на рисунке.

 
 


На рис. а показан датчик линейных перемещений. На рис. б – угловых перемещений. Для повышения точности измерений применяют трансформаторную схему подключения (рис. в) и дифференциальную схему (рис. Г).

Магнитоупругие датчики – применяют для измерения больших сил (F=105…106 Н). Датчик устроен следующим образом: в диэлектрическом материале большой твердости залиты две взаимно перпендикулярные катушки. Если на первую катушку подать переменное напряжение, на второй катушке будет индуцироваться ЭДС равная нулю. В случае приложения к датчику силы, происходит деформация материала, в следствие чего изменяется пространственное положение катушек и на второй катушке появляется ЭДС отличная от нуля. Устройство датчика показано на рисунке.

ЛЕКЦИЯ 20

СТАНДАРТИЗАЦИЯ

Стандартизация – это установление и применение правил с целью упорядочения деятельности в определённой области на пользу и при участии всех заинтересованных сторон, в частности для достижения всеобщей оптимальной экономии при соблюдении условий эксплуатации и требований безопасности. Стандартизация, основанная на объединённых достижениях науки, техники и передового опыта, определяет основу не только настоящего, но и будущего развития промышленности.

Из определения следует, что стандартизация – это плановая деятельность по установлению обязательных правил, норм и требований, выполнение которых обеспечивает экономически оптимальное качество продукции, повышение производительности общественного труда и эффективности использования материальных ценностей при соблюдении требований безопасности.

СТАНДАРТ

Стандарт – нормативно-технический документ по стандартизации, устанавливающий комплекс норм, правил, требований к объекту стандартизации и утверждённый компетентным органом. Стандарт, разработанный на основе науки, техники, передового опыта, должен предусматривать оптимальные для общества решения. Стандарты разрабатывают как на материальные предметы (продукцию, эталоны, образцы веществ и т. п.), так и на нормы, правила, требования к объектам организационно-методического и общетехнического характера. Стандарт – это самое целесообразное решение повторяющейся задачи для достижения определённой цели. Стандарты содержат показатели, которые гарантируют возможность повышения качества продукции и экономичности её производства, а также повышения уровня её взаимозаменяемости.

ЦЕЛИ И ЗАДАЧИ СТАНДАРТИЗАЦИИ

Главная цель Государственной системы стандартизации (ГСС) - с помощью стандартов, устанавливающих показатели, нормы и требования, соответствующие передовому уровню отечественной и зарубежной науки, техники и производства, содействовать обеспечению пропорционального развития всех отраслей народного хозяйства страны. Эта система имеет также следующие цели:

· улучшение качества работы, качества продукции и обеспечение его оптимального уровня;

· обеспечение условий для развития специализации в области проектирования и производства продукции, снижения её трудоёмкости, металлоёмкости и улучшения других показателей;

· обеспечение увязки требований продукции с потребностями обороны страны;

· обеспечение условий для широкого развития экспорта товаров высокого качества, отвечающих требованиям мирового рынка;

· рациональное использование производственных фондов и экономия материальных и трудовых ресурсов;

· развитие международного экономического и технического сотрудничества;

· обеспечение охраны здоровья населения, безопасности труда рабочих, охраны природы и улучшения использования природных ресурсов.

Для достижения указанных целей необходимо решить следующие задачи:

· установление прогрессивных систем стандартов на основе комплексных целевых программ, определяющих требования к конструкции изделий, технологии их производства, качеству сырья, материалов, полуфабрикатов и комплектующих изделий, а также создающих условия для формирования требуемого качества конечной продукции на стадии на стадии её проектирования, серийного производства и эффективного использования;

· определение единой системы показателей качества продукции, методов и средств контроля и испытаний, а также необходимого уровня надёжности в зависимости от назначения изделий и условий их эксплуатации;

· установление норм, требований и методов в области проектирования и производства продукции с целью обеспечения её оптимального качества и исключения нерационального многообразия видов, марок и типоразмеров продукции;

· развитие унификации промышленной продукции и агрегатирования машин как важнейшего средства специализации, повышения экономичности производства, производительности труда, уровня взаимозаменяемости, эффективности эксплуатации и ремонта изделий;

· обеспечение единства и достоверности измерений в стране, создание и совершенствование государственных эталонов единиц физических величин, а также методов и средств измерений высшей точности;

· установление единых систем документации, в том числе унифицированных систем документации, используемых в автоматизированных системах управления, установление систем классификации и кодирования технико-экономической информации, форм и систем организации производства и технических средств научной организации труда;

· установление единых терминов и обозначений в важнейших областях науки и техники, а также в отраслях народного хозяйства и др.

Одной из основных задач Госстандарта является разработка мер по повышению эффективности стандартизации в улучшении качества выпускаемой продукции и экономичности её производства путём внедрения систем стандартов при комплексной и опережающей стандартизации, развития межотраслевой унификации, создания общетехнических систем стандартов, обеспечения единства и достоверности измерений в стране и др.

Руководство стандартизацией в каждой отрасли осуществляют: отделы стандартизации министерств, а также отделы в главных управлениях министерств; головные организации по стандартизации, создаваемые при наличии в системе министерства нескольких базовых организаций по стандартизации; базовые организации по стандартизации, выделяемые из ведущих научно-исследовательских, проектно-конструкторских организаций и предприятий; научно-исследовательские и конструкторские отделы (лаборатории, бюро) стандартизации в НИИ, КБ и на предприятиях.

КАТЕГОРИИ СТАНДАРТОВ

В зависимости от сферы действия ГСС предусматривает следующие категории стандартов: государственные (ГОСТ), отраслевые (ОСТ), республиканские (РСТ) и стандарты предприятий (СТП). Государственные стандарты обязательны для всех предприятий, организаций и учреждений страны в пределах сферы их действия. Отраслевые стандарты используют все предприятия и организации данной отрасли (например, станкостроительной), а также другие предприятия и организации (независимо от ведомственной принадлежности), разрабатывающие, изготовляющие и применяющие изделия, которые относятся к номенклатуре, закреплённой за соответствующим министерством. Республиканские стандарты обязательны для предприятий республиканского и местного подчинения данной республики независимо от их ведомственной принадлежности. Стандарты предприятий (объединений) действуют только на предприятии, утвердившем данный стандарт.

Государственные стандарты устанавливают требования преимущественно к продукции массового и крупносерийного производства широкого и межотраслевого производства, к изделиям, прошедшим государственную аттестацию, экспортным товарам; они устанавливают также общие нормы, термины и т. п. Исходя из этого, можно указать на следующие объекты государственной стандартизации: общетехнические и организационно-методические правила и нормы; нормы точных изделий межотраслевого применения; требования к продукции, поставляемой для эксплуатации в различных климатических условиях, методы их контроля; межотраслевые требования и нормы техники безопасности и производственной санитарии; научно-технические термины, определения и обозначения; единицы физических величин; государственные эталоны единиц физических величин и общесоюзные поверочные схемы; методы и средства поверки средств измерений; государственные испытания средств измерений; допускаемые погрешности измерений; системы конструкторской, технологической, эксплуатационной и ремонтной документации; системы классификации и кодирования технико-экономической информации и т. д.

Отраслевые стандарты устанавливают требования к продукции, не относящейся к объектам государственной стандартизации, к технологической оснастке, инструменту, специфическим для отрасли, а также на нормы, правила, термины и обозначения, регламентация которых необходима для обеспечения взаимосвязи в производственно-технической деятельности предприятий и организаций отрасли и для достижения оптимального уровня качества продукции. Объектами отраслевой стандартизации могут быть машины, оборудование, приборы и другие изделия серийного производства, детали и составные части этих изделий; сырьё, материалы, топливо, полуфабрикаты, применяемые в отрасли; типовые технологические процессы внутриотраслевого применения и др. ОСТы разрабатывают также для ограничения, например, типоразмеров крепёжных деталей, полей допусков и посадок и др.

Республиканские стандарты устанавливают требования к продукции, выпускаемой предприятиями союзно-республиканского и местного подчинения республики. Номенклатура продукции, на которую утверждают республиканские стандарты, должна быть согласована с Госстандартом и соответствующими ведущими министерствами и ведомствами по закреплённым группам продукции. Объектами республиканской стандартизации могут быть сырьё, материалы, топливо и полезные ископаемые внутриреспубликанского производства и применения; отдельные типы изделий массового или серийного производства, относящиеся к профилю республиканских министерств, товары народного потребления и др.

Стандарты предприятий (объединений) распространяются на нормы, правила, методы, составные части изделий и другие объекты, имеющие применение только на данном предприятии; на нормы в области организации и управления производством; на технологические нормы и требования, типовые технологические процессы, оснастку, инструмент и т. п. Стандарты предприятий могут также устанавливать ограничения по применяемой номенклатуре деталей, составных частей, материалов, предусмотренные государственными, отраслевыми или республиканскими стандартами.

МЕТОДИКА РАЗРАБОТКИ И УТВЕРЖДЕНИЯ СТАНДАРТОВ

Целесообразность разработки каждого стандарта обосновывается потребностями народного хозяйства и ожидаемым техническим и экономическим эффектом. Для этого предварительно подбирают и анализируют литературные и производственные данные, устанавливают тенденции развития и перспективные потребности промышленности по стандартизуемым объектам или параметрам. Обязательным этапом является анализ зарубежного опыта и достигнутого там уровня качественных показателей стандартизуемых объектов.

Номенклатура показателей качества должна быть достаточной, чтобы всесторонне и полно характеризовать изделие не только с точки зрения изготовителя, но и с точки зрения потребителя. Например, для покупателя телевизора важны размеры экрана, четкость изображения, гарантийный срок, внешний вид и его ремонтопригодность, т.е. возможность быстрого обнаружения повреждений и замены неисправных элементов. Для завода- изготовителя, кроме указанного, важное значение имеют совершенство конструкции и технологичность составных частей телевизора, определяющих трудоемкость и экономичность его производства, и т.д.

ГСС устанавливает шесть стадий разработки стандартов:

· организация разработки стандарта, составление и утверждение технического задания;

· разработка проекта стандарта и рассылка его на отзыв;

· анализ отзывов и разработка окончательной редакции проекта стандарта;

· подготовка, согласование и представление стандарта на утверждение;

· рассмотрение, утверждение и регистрация стандарта;

· издание стандарта и информации о нем.

Основная литература

1. Основы метрологии и электрические измерения. Под ред. Б.М. Душина - Л Энергоатомиздат 1987г. 480 c.

2. Электрические измерения. Под ред. А.В. Фремке - Л: Энергия,1980 г.

Дополнительная литература

1. Электрические измерения. Под ред. В.Н.Малиновского. М:Энергоатомиздат,1985 г. - 416с.

2. Задачи и примеры расчетов по электроизмерительной технике /Р.Н.Демидова-Панферова, В.Н.Малиновский, Ю.С. Солодов М: Энергоатомиздат 1990 г. - 192 с.

3. Оценка погрешностей результатов измерений П.В.Новицкий, И.А.Зограф. Л:Энергоатомиздат 1985 г.- 248 с.

4. Справочник по электроизмерительным приборам /под ред. К.К. Илюнина Л: Энергия 1977г.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: