Тарельчатые колонны

Классификация колонных аппаратов

Определяющей характеристикой массообменной аппаратуры является состояние межфазной поверхности. В соответствии с этим в основу классификации аппаратуры, предназначенной для проведения процессов массопередачи, положен принцип образования межфазной поверхности. Диффузионные аппараты классифицируются на группы: 1) аппараты с фиксированной поверхностью фазового контакта; 2) аппараты с поверхностью контакта, образуемой в процессе движения потоков, 3) аппараты с внешним подводом энергии.

В соответствии с приведенной классификацией наиболее типичные широко применяемые в промышленности аппараты распределяются по группам, указанным в табл.8.1.

Конструкции массообменных аппаратов предъявляются следующие основные требования: дешевизна, простота в обслуживании, высокая производительность, максимально развитая поверхность контакта между фазами и эффективность передачи массы вещества из одной фазы в другую, устойчивость режима в широком диапазоне нагрузок, максимальная пропускная способность по паровой (газовой) и жидкой фазе, минимальное гидравлическое сопротивление, прочность конструкции и долговечность.

Таблица 8.1 - Классификация теплообменников.

I Аппараты с фиксированной поверхностью II Аппараты с поверхностью, образуемой в процессе движения фаз III Аппараты с внешним подводом энергии
№ п/п Наименование аппарата № п/п Наименование аппарата № п/п Наименование аппарата
  Пленочные колонны с орошаемыми стенками   Тарельчатые колпачковые колонны   Аппараты с механическими мешалками
  Колонны с плоско-параллельной насадкой   Тарельчатые ситчатые колонны   Пульсационные колонны
  Полочные колонны   Тарельчатые колонны с однонаправленным движением пара и жидкости   Вибрационные колонны
  Распылительные колонны   Тарельчатые, решетчатые и ситчатые колонны без переточных патрубков (колонны с провальными тарелками)   Центробежные аппараты
      Насадочные колонны    
      Инжекторные (струйные) аппараты    

Конструкции и тарельчатых колонн весьма разнообразны (рисунок 128). Это объясняется чрезвычайно большим ассортиментом перерабатываемого сырья, широким диапазоном производительности и различным гидравлическим режимом колонн. В качестве конструкционного материала для изготовления колонных аппаратов наиболее широко применяют углеродистую и кислотостойкую сталь. В некоторых случаях по условиям коррозии и очистки тарелок целесообразно использовать чугун. Колонны из цветных металлов выполняются реже. В настоящее время осваиваются тарельчатые колонны из неметаллических материалов керамики, графита, фторопласта и т.д.

1 - куб колонны; 2 - колонна.

Рисунок 128 - Типовые конструкции а) колпачковая; б) ситчатая; в) насадочная.

В химической и нефтеперерабатывающей промышленности находят применение тарельчатые колонны различных размеров: от небольших диаметром 300 - 400 мм до крупнотоннажных высокопроизводительных установок с колоннами диаметром 5, 8 и даже 12 м. Высота колонны зависит от числа тарелок и расстояния между нами. Чем меньше расстояние, тем ниже колонна, однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность переброса жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Поэтому расстояние между тарелками обычно не принимают менее 200 - 300 мм. По соображениям конструктивного порядка и возможности ремонта и очистки тарелок расстояния между ними принимают по табл.8.2.

Кипятильники в ректификационных установках малой производительности делают в виде змеевиков, установленных непосредственно в кубе, но более часто кипятильник монтируют в виде выносного теплообменника, который устанавливается вертикально около куба и связан с ним двумя патрубками. Колонны периодического действия имеют кубы большой емкости, достаточной для приема единовременной загрузки продукта. В колоннах непрерывного действия не нужен большой объем кубовой жидкости, и кубом в них является нижняя часть колонны высотой 1 - 1,5 м.

Таблица 8.2 - Расстояние между тарелками.

Диаметр колонны, м Расстояние между тарелками, мм
До 0.8 0.8 - 1.6 1.6 - 2.0 2.0 - 2.4 Более 2.4 200 - 350 350 - 400 400 - 500 500 - 600 Более 600

К тарелкам предъявляются следующие требования: они должны иметь высокий к.п.д. (обеспечивать хороший контакт между жидкостью и паром), обладать малым гидравлическим сопротивлением, устойчиво работать при значительном колебании расходов пара и жидкости. Тарелки должны быть просты по конструкции, удобны в эксплуатации, иметь малый вес и быть нечувствительными к различным осадкам и отложениям, что особенно важно при работе с загрязненными жидкостями. Наибольшее применение находят колпачковые, ситчатые и клапанные тарелки.

В ректификационных и абсорбционных колоннах, применяемых в нефтеперерабатывающей и нефтехимической промышленности, используют несколько типов тарелок, область применения которых зависит главным образом от нагрузок по пару и жидкости и от их физических свойств.

В общем случав можно считать, что вакуумные колонны характеризуются малыми нагрузками по жидкости (малые объемные расходы жидкости); атмосферные колонны–умеренными нагрузками по пару и жидкости; колонны, работающие под давлением– малыми нагрузками по пару и большими по жидкости. Особенно велики нагрузки по жидкости в абсорберах и десорберах.

Необходимость применения тарелок различных типов диктуется также спецификой и особенностями работы нефтеперерабатывающих и газобензиновых заводов, например, производительностью различных связанных между собой установок, которая зависит не только от количества исходного сырья, но и от его состава.

Колпачковые тарелки (рисунок 129а) наиболее часто применяют в ректификационных установках. Конструктивная схема устройства колпачка и обозначения основных размеров приведены на рисунке 129а.

Пары с предыдущей тарелки попадают в паровые патрубки колпачков и барботируют через слой жидкости, в которую частично погружены колпачки. Колпачки имеют отверстия или зубчатые прорези, расчленяющие пар на мелкие струйки для увеличения поверхности его соприкосновения с жидкостью. Переливные трубки служат для подвода и отвода жидкости и регулирования ее уровня на тарелке. Основной областью массообмена и теплообмена между парами и жидкостью, как показали исследования, является слой пены и брызг над тарелкой, создающийся в результате барботажа пара. Высота этого слоя зависит от размеров колпачков, глубины их погружения, скорости пара, толщины слоя жидкости на тарелке, физических свойств жидкости и др. Расчет основных размеров колпачков и некоторые рекомендации изложены в методике расчета тарельчатых колпачковые колонн.

Следует отметить, что, кроме колпачковых тарелок, применяют также клапанные, желобочные, S–образные, чешуйчатые, провальные и другие конструкции и тарелок. В расчетах необходимо учитывать особенности конструкций тарелок.

Клапанные тарелки (рисунок 129б, в) показали высокую эффективность при значительных интервалах нагрузок благодаря возможности саморегулирования. В зависимости от нагрузки клапан перемещается вертикально, изменяя площадь живого сечения для прохода пара, причем максимальное сечение определяется высотой устройства, ограничивающего подъем. Площадь живого сечения отверстий для пара составляет 10 - 15 % площади сечения колонны. Скорость пара составляет 1,2 м/с. Клапаны изготавливают в виде пластин круглого или прямоугольного сечения с верхним (рисунок 129б) или нижним (129в) ограничителем подъема.

а) колпачковая; б) клапанная с верхним ограничителем подъема; в) клапанная с нижним ограничителем подъема; г) из S - образных элементов; д) пластинчатая; е) чешуйчатая; ж) прямоточная.

Рисунок 129 - Конструкции тарелок.

Тарелки, собранные из S–образных элементов (рисунок 129в), обеспечивают движение пара и гладкости в одном направлении, способствуя выравниванию концентрации жидкости на тарелке. Площадь живого сечения на тарелке составляет 12 - 20 % от площади сечения колонны. Коробчатое поперечное сечение элемента создает значительную жесткость, позволяющую устанавливать его на опорное кольцо без промежуточных опор в колоннах диаметром до 4,5 м.

Чешуйчатые тарелки (рисунок 129е) подают пар в направлении потока жидкости. Они работают наиболее эффективно при струйном режиме, возникающем при скорости пара в чешуях свыше 12 м/с. Площадь живого сечения составляет 10 % площади сечения колонны. Чешуи бывают арочными (рисунок 129е вариант первый) и лепестковые (рисунок 129е вариант второй), их располагают в тарелке в шахматном порядке. Простота конструкции, эффективность и большая производительность преимущества этих тарелок.

Пластинчатые тарелки (рисунок 129д) собраны из отдельных пластин расположенных под углом 4 - 90 к горизонту. В зазорах между пластинами проходит пар со скоростью 20 - 50 м/с. Над пластинами установлены отбойные щитки, уменьшающие брызгоунос. Эти тарелки отличаются большой производительностью, малым сопротивлением и простотой конструкции.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: