Фаза экспрессии вирусного генома

Лекция 5

ТРАНСКРИПЦИЯ

Транскрипция — это переписывание ДНК на РНК по законам генетического кода. Это означает, что РНК сос­тоит из нуклеотидных последовательностей, комплемен­тарных ДНК. Нити ДНК в участке транскрипции разде­ляются и функционируют как матрицы, к которым при­соединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин связы­вается с тимином, урацил — с аденином, гуанин — с цитозином и цитозин - с гуанином). Транскрипция осуществляется с помощью специального фермента — РНК-полимеразы, который связывает нуклеотиды путем образования 3'-5'-фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матри­цы.

Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генети­ческой информации, не может непосредственно програм­мировать синтез белка. Передачу генетической информа­ции от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей схемой:

ДНК - (транскрипция) –и РНК – (трансляция) - белок

где стрелки показывают направление переноса генети­ческой информации.

Реализация генетической информации у вирусов. Стра­тегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке.

ДНК-содержащие вирусы, репродукция которых происхо­дит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточный фермент, находящийся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом — ДНК-полимеразой, которая прони­кает в клетку в составе вируса. К этим вирусам относятся вирусы оспы и иридовирусы.

РНК-содержащие вирусы, у которых хранителем генетической информации является не ДНК, а РНК, решают эту проблему особым образом. У РНК-содержащих «плюс-нитевых» вирусов, у которых функции иРНК выполняет сам геном, передача генетической информации осуществляется по наиболее простой схеме:

РНК - белок

К этой группе вирусов относятся пикорнавирусы, тогавирусы, коронавирусы. У них нет необходимости в акте транскрипции для синтеза вируспецифических белков. Поэтому транскрипцию как самостоятельный процесс у этих вирусов не выделяют. Иначе обстоит дело у вирусов, геном которых не может выполнять функцию иРНК. В клетке синтезируется комплементарная геному РНК, которая и является информационной. Передача генети­ческой информации у этих вирусов осуществляется по схеме:

РНК – иPHK - белок

У этих вирусов транскрипция выделена как самостоя­тельный процесс в инфекционном цикле. К ним относятся две группы вирусов животных.

1.Вирусы, геном которых представлен однонитчатой РНК: ортомиксовирусы, парамиксовирусы, рабдовирусы, буньявирусы. Поскольку геномная РНК этих вирусов является «минус-нитью», указанную группу вирусов назы­вают «минус-нитевыми» вирусами.

2. Вирусы, геном которых представлен двунитчатой РНК (диплорнавирусы). Среди вирусов животных к ним относятся реовирусы.

В клетке нет фермента, который может полимеризовать нуклеотиды на матрице РНК. Эту функцию выпол­няет вирусспецифический фермент — РНК-полимераза, или транскриптаза, которая находится в составе вирусов и вместе с ними проникает в клетку.

Среди РНК-содержащих вирусов животных есть семейство ретровирусов, которые имеют уникальный путь передачи генетической информации. РНК этих вирусов переписывается на ДНК, ДНК интегрирует с клеточным геномом и в его составе переписывается на РНК, которая обладает информационными функциями. Путь передачи генетической информации в-этом случае осуществляется по более сложной схеме:

РНК - ДНК - иРНК - белок

В составе этих вирусов есть уникальный вирусспецифи­ческий фермент, который переписывает РНК на ДНК. Этот процесс называется обратной транскрипцией, а фер­мент — обратная транскриптаза, или ревертаза. Тот же фермент синтезирует нить ДНК на матрице ДНК. Двунитчатая ДНК после замыкания в кольцо интегрирует с клеточным геномом, и транскрипцию интегрированной ДНК в составе клеточных геномов осуществляет кле­точная РНК-полимераза. Поскольку иРНК ретровирусов гомологична геномной РНК (а не комплементарна ей), ретровирусы являются «плюс-нитевыми» вирусами.

Ферменты, транскрибирующие вирусный геном. Тран­скрипция ряда ДНК-содержащих вирусов — паповавирусов, аденовирусов, вирусов герпеса, парвовирусов, гепадна-вирусов осуществляется в ядре клетки, и в этом процессе широко используются механизмы клеточной транскрип­ции — ферменты транскрипции и дальнейшей модифи­кации транскриптов. Транскрипция этих вирусов осуще­ствляется клеточной РНК-полимеразой II — ферментом, который осуществляет транскрипцию клеточного генома. Однако особая группа транскриптов аденовируса синте­зируется с помощью другого клеточного фермента — РНК-полимеразы III. У двух других семейств ДНК-содер­жащих вирусов животных - вирусов оспы и иридовирусов — транскрипция происходит в цитоплазме. По­скольку в цитоплазме нет клеточных полимераз, тран­скрипция этих вирусов нуждается в специальном вирус­ном ферменте — вирусной РНК-полимеразе. Этот фермент является структурным вирусным белком.

У РНК-содержащих вирусов транскрипция осуще­ствляется вирусспецифическими транскриптазами, т. е. ферментами, закодированными в вирусном геноме. Вирусспецифические транскриптазы могут быть как структурными белками, входящими в состав вириона (эндогенная транскриптаза), так и неструктурными белками, которые синтезируются в зараженной клетке, но не включаются в вирион.

Транскрипция в зараженной клетке. Синтез компле­ментарных РНК на родительских матрицах с помощью родительской транскриптазы носит название первичной транскрипции в отличие от вторичной транскрипции, происходящей на более поздних стадиях инфекционного цикла на вновь синтезированных, дочерних матрицах, с помощью вновь синтезированной транскриптазы. Боль­шая часть иРНК в зараженной клетке является продуктом вторичной транскрипции.

Транскриптивные комплексы. У сложно устроенных РНК-содержащих вирусов животных транскрипция происходит не на матрице голой РНК, а в составе вирусных нуклеокапсидов или сердцевин (транскриптив­ные комплексы). Связанные с геномом капсидные белки не только не препятствуют транскрипции, но и необходи­мы для нее, обеспечивая правильную конформацию тяжа РНК, защиту его от клеточных протеаз, связь отдельных фрагментов генома друг с другом, а также регуляцию транскрипции.

Регуляция транскрипции. Транскрипция вирусного генома строго регулируется на протяжении инфекцион­ного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипций — сверхранняя, ранняя и поздняя. К этим вирусам относятся вирусы оспы, герпеса, паповавирусы, аденовирусы. В результате сверхранней и ран­ней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома — поздние гены, с образованием поздних иРНК. Количество поздних генов обычно пре­вышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков — фер­ментов и регуляторов транскрипции и репликации вирус­ного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преоблада­нием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК — полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются ά-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих γ-белки. В свою очередь ά-белки включают транскрипцию последней группы поздних генов, кодирующих γ-белки. Такой тип регуляции получил название «каскадной».

У РНК-содержащих вирусов синтез транскриптов также строго контролируется в отношении как количества каждого класса транскриптов, так и периода инфекции, когда определенные транскрипты синтезируются с макси­мальной скоростью. На ранней стадии инфекции преиму­щественно синтезируются транскрипты двух генов вируса гриппа — NP и NS, на поздней стадии инфекции — транскрипты генов М, НА и NA. Остальные три гена для Р-белков синтезируются примерно с одинаковой скоростью на протяжении всего периода инфекции. У реовирусов на ранней стадии инфекции преимуществен­но транскрибируется 4 из 10 фрагментов генома и лишь на поздней стадии транскрибируется весь геном. Однако если поместить геном вируса в бесклеточную РНК-синтезирующую систему, будет происходить равномерная транскрипция всех 10 фрагментов генома. Эти факты говорят о жестком контроле транскрипции со стороны клетки-хозяина и возможном наличии специфических клеточных регуляторов.

У парамиксовирусов и рабдовирусов весь геном представляет собой одну транскрипционную единицу с един­ственным промотором (участок связывания транскриптазы и начала транскрипции) у З'-конца. Вдоль генома суще­ствует как бы градиент эффективности транскрипции. Ближайший к З'-концу ген (ген наиболее обильного белка NP) считывается наиболее часто. Напротив, ген для самого высокомолекулярного белка — транскрипта­зы,— содержащегося лишь в количестве нескольких моле­кул на вирион, находится на противоположном конце генома и транскрибируется значительно реже. Такая регуляция экспрессии генов путем порядка их располо­жения в геноме носит название «полярность». При этом способе регуляции количество молекул полипептидов определяется полярностью гена, т. е. расстоянием его от промотора.

ТРАНСЛЯЦИЯ

Синтез белка в клетке происходит в результате трансляции иРНК. Трансляцией называется процесс пере­вода генетической информации, содержащейся в иРНК, на специфическую последовательность аминокислот. Иными словами, в процессе трансляции осуществляется перевод 4-буквенного языка азотистых оснований на 20-буквенный язык аминокислот.

Транспортные РНК. Свою аминокислоту тРНК узнают по конфигурации ее боковой цепи, а специфический фермент аминоацил-синтетаза катализирует ассоциацию тРНК с аминокислотой. В клетке существует большое количество разнообразных видов тРНК. Поскольку для каждой аминокислоты должна быть своя тРНК, количе­ство видов тРНК должно быть не меньше 20, однако в клетке их значительно больше. Это связано с тем, что для каждой аминокислоты существует не один, а несколь­ко видов тРНК. Молекула тРНК представляет собой однонитчатую РНК со сложной структурой в виде клено­вого листа (рис. 18). Один ее конец связывается с амино­кислотой (конец а), а противоположный — с нуклеоти-дами иРНК, которым они комплементарны (конец б). Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», комплементарные кодону три нуклеотида на конце тРНК называются «антикодон».

Рибосомы. Синтез белка в клетке осуществляется на рибосоме. Рибосома состоит из двух субъединиц, большой и малой, малая субъединица примерно в два раза меньше большой. Обе субъединицы содержат по одной молекуле рибосомальной РНК и ряд белков. Рибосомальные РНК синтезируются в ядре на матрице ДНК с помощью РНК-полимеразы. В малой рибосомальной субъединице есть канал, в котором находится информа­ционная РНК. В большой рибосомальной субъединице есть две полости, захватывающие также малую рибосомальную субъединицу. Одна из них содержит аминоацильный центр (А-центр), другая — пептидильный центр (П-центр).

Фазы трансляции. Процесс трансляции состоит из трех фаз: 1) инициации, 2) элонгации и 3) терминации.

Инициация трансляции. Это наиболее ответ­ственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» на 5'-конце и скользит к 3'-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторным кодоном являет­ся кодон АУГ или ГУГ, копирующие метионин. С метионина начинается синтез всех полипептидных цепей.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необ­ходимые для начала трансляции. Их по крайней мере три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК и, таким образом, являются определяющим фактором в дискриминации между различными иРНК, присутствующими в клетке, как правило, в избыточном количестве.

В результате формируется комплекс, необходимый для инициации трансляции, который называется инициа­торным комплексом. В инициаторный комплекс входят: 1) иРНК; 2) малая рибосомальная субъединица; 3) аминоацил-тРНК, несущая инициаторную аминокислоту; 4) инициаторные факторы; 5) несколько молекул ГТФ.

В рибосоме осуществляется слияние потока информа­ции с потоком аминокислот. Аминоацил-тРНК входит в А-центр большой рибосомальной субъединицы, и ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидиль­ный центр, и ее аминокислота присоединяется к ини­циаторной аминокислоте с образованием первой пептид­ной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспор­те специфических аминокислот.

Элонгация трансляции. Это процесс удлине­ния, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептид­ной связи. Происходит постоянное протягивание нити иРНК через рибосому и. «декодирование» заложенной в ней генетической информации. иРНК функ­ционирует на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, коди­руемую данной иРНК. Группа рибосом, работающих на одной молекуле иРНК, называется полирибосомой, или полисомой. Размер полисом значительно варьирует в зависимости от длины молекулы иРНК, а также от расстояния между рибосомами. Так, полисомы, которые синтезируют гемоглобин, состоят из 4—6 рибосом, высо­комолекулярные белки синтезируются на полирибосомах, содержащих 20 и более рибосом.

Терминация трансляции. Терминация транс­ляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК. Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полири­босомы распадаются на субьединицы, которые могут войти в состав новых полирибосом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: