double arrow

УК(П). Лекция 9. Методы контроля качества, анализа дефектов и их причин

Часть 1 Прежде чем браться за применение статистических методов в производ­ственном процессе, необходимо четко представлять цель применения этих методов и выгоду производства от их применения. Очень редко данные используются для заключения о качестве в том виде, в каком они были получены. Обычно для анализа данных используются семь, так называемых, статистических методов или инструментов контроля качества: расслаивание (стратификация) данных; графики; диаграмма Парето; причинно-следственная диаграмма (диаграмма Исикавы или «рыбий скелет»); контрольный листок и гистограмма; диаграмма разброса; контрольные карты. 1. Расслаивание (стратефикация). При разделении данных на группы в соответствии с их особенностями группы именуют слоями (стратами), а сам процесс разделения – расслаиванием (стратификацией). Желательно, чтобы различия внутри слоя были как можно меньше, а между слоями – как можно больше. В результатах измерений всегда есть больший или меньший разброс параметров. Если осуществлять стратификацию по факторам, порождающим этот разброс, легко выявить главную причину его появления, уменьшить его и добиться повышения качества продукции. Применение различных способов расслаивания зависит от конкретных задач. В производстве часто используется способ, называемый 4М, учиты­вающий факторы, зависящие от: человека (man); машины (machine); материала (material); метода (method). То есть расслаивание можно осуществить так: - по исполнителям (по полу, стажу работы, квалификации и т.д.); - по машинам и оборудованию (по новому или старому, марке, типу и т.д.); - по материалу (по месту производства, партии, виду, качеству сырья и т.д.); - по способу производства (по температуре, технологическому приему и т.д.). В торговле может быть расслаивание по районам, фирмам, продавцам, видам товара, сезонам. Метод расслаивания в чистом виде применяется при расчете стоимости изделия, когда требуется оценка прямых и косвенных расходов отдельно по изделиям и партиям, при оценке прибыли от продажи изделий отдельно по клиентам и по изделиям и т.д. Расслаивание также используется в случае применения других статистических методов: при построении причинно-следственных диаграмм, диаграмм Парето, гистограмм и контрольных карт. 2. Графическое представление данных широко применяется в про­изводственной практике для наглядности и облегчения понимания смысла данных. Различают следующие виды графиков: А). График, представляющий собой ломанную линию (рис. 4.9), приме­няется, например, для выражения изменения каких-либо данных с течением времени.

Рис. 4.9 Пример «ломанного» графика и его аппроксимации.

Б) Круговой и ленточный графики (рис. 4.10 и 4.11) применяются для выражения процентного соотношения рассматриваемых данных.

Рис. 4.10 Пример кругового графика.

Соотношение составляющих себестоимости производства:

1 – себестоимость производства продукции в целом;

2 – косвенные расходы;

3 – прямые расходы и т.д.

Рис. 4.11 Пример ленточного графика.

На рисунке 4.11 показано соотношение сумм выручки от продажи по отдельным видам изделий (A,B,C), видна тенденция: изделие B перспек­тивно, а A и C – нет.

В). Z-образный график (рис. 4.12) применяется для выражения условий достижений данных значений. Например, для оценки общей тенденции при регистрации по месяцам фактических данных (объём сбыта, объём производства и т.д.)

График строится следующим образом:

1) откладываются значения параметра (например, объём сбыта) по месяцам (за период одного года) с января по декабрь и соединяются отрез­ками прямой (ломаная линия 1 на рис. 4.12);

2) вычисляется кумулятивная сумма за каждый месяц и строится соответствующий график (ломаная линия 2 на рис. 4.12);

3) вычисляются итоговые значения (меняющийся итог) и строится соответствующий график. За меняющийся итог в данном случае принимается итог за год, предшествующий данному месяцу (ломаная линия 3 на рис. 4.12).

Ось ординат – выручка по месяцам, ось абсцисс – месяцы года.

По меняющемуся итогу можно определить тенденцию изменения за длительный период. Вместо меняющегося итога можно наносить на график планируемые значения и проверять условия их достижения.

Г). Столбчатый график (рис. 4.13) представляет количественную зависимость, выражаемую высотой столбика, таких факторов, как себестоимость изделия от его вида, сумма потерь в результате брака от процесса и т.д. Разновидности столбчатого графика – гистограмма и диаграмма Парето. При построении графика по оси ординат откладывают количество факторов, влияющих на изучаемый процесс (в данном случае изучение стимулов к покупке изделий). По оси абсцисс – факторы, каждому из которых соответствует высота столбика, зависящая от числа (частоты) проявления данного фактора.

Рис. 4.13 Пример столбчатого графика.

1 – число стимулов к покупке; 2 – стимулы к покупке;

3 – качество; 4 – снижение цены;

5 – гарантийные сроки; 6 – дизайн;

7 –доставка; 8 – прочие;

Если упорядочить стимулы к покупке по частоте их проявления и построить кумулятивную сумму, то получим диаграмму Парето.

3. Диаграмма Парето.

Схема, построенная на основе группирования по дискретным признакам, ранжированная в порядке убывания (например, по частоте появления) и показывающая кумулятивную (накопленную) частоту, называется диаграммой Парето (рис. 4.10). Парето – итальянский экономист и социолог, использовавший свою диаграмму для анализа богатств Италии.

Рис. 4.14 Пример диаграммы Парето:

1 – ошибки в процессе производства; 2 – некачественное сырье;

3 – некачественные орудия труда; 4 – некачественные шаблоны;

5 – некачественные чертежи; 6 – прочее;

А – относительная кумулятивная (накопленная) частота, %;

n – число бракованных единиц продукции.


Сейчас читают про: