Диффузионное и кинетическое горение

Гомогенное и гетерогенное горение.

Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают:

1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния).

2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме.

Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции.

Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов.

Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.

По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение.

Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет.

Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза.

Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер.

Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение.

Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):

Рис. 17. Модель горения

твердого вещества.

- прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва;

- пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества;

- предпламенной в газовой фазе, в которой образуется смесь с окисли-телем;

- пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения;

- продуктов горения.

Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения.

В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным.

Структура пламени диффузионного горения состоит из трех зон (рис.18):

В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 5000С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.

Рис. 18. Структура пламени.

Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода):

CnHm + O2 → CO + CO2 + Н2О;

2CO = CO + C.

В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени:

2CO+O2=2CO2;

C+O2=CO2.

Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа.

Все виды диффузионного горения присущи пожарам.

Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопровод-ности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам.

В данном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).

Рис. 19. Схема распространения пламени в горючей смеси: - источник зажигания; - направления движе-ния фронта пламени.

Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени.

Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом.

По степени сгорания, т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным.

Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении.

Другой пример: при недостатке кислорода углерод сгорает до угарного газа:

2C+O2=2СО.

Если добавить O, то реакция идет до конца:

2СО+O2=2СО2.

Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение.

Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь.

Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке:

, (4.1)

где: u - скорость газового потока;

n - кинетическая вязкость;

l – характерный линейный размер.

Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Reкр, Reкр ~ 2320.

Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: