Контакты

Материалы тонкопленочных ГИС

Гибридные ИС

Широкое распространение получили гибридные ИС – интегральные схемы, в которых используются плёночные пассивные элементы и навесные элементы (резисторы, конденсаторы, диоды, транзисторы), называемые компонентами ГИС. Электрические связи между элементами и компонентами осуществляются с помощью плёночного либо проволочного монтажа.

Навесными элементами в микроэлектронике называют миниатюрные, обычно бескорпусные диоды и транзисторы, представляющие собой самостоятельные элементы. Время от времени в гибридных ИС навесными могут быть и некие пассивные элементы, к примеру, миниатюрные конденсаторы с такой большой емкостью, что их нереально выполнить в виде пленок.

Это могут быть и миниатюрные трансформаторы. В некоторых вариантах в гибридных ИС навесными являются целые полупроводниковые ИС.

Проводники от транзистора либо от остальных навесных частей присоединяют к подходящим точкам схемы чаше всего способом термокомпрессии (провод при высокой температуре прижимается под большим давлением).

Гибридные ИС изготовляют следующим образом. Сначала подложку тщательно шлифуют и полируют. Потом наносят резистивные пленки, далее ‒ нижние обкладки конденсаторов, катушки и соединительные полосы, после чего ‒ диэлектрические пленки, а потом опять металлические. Навешивают («приклеивают») активные и остальные дискретные элементы, и их выводы присоединяют к подходящим точкам схемы. Схему помещают в корпус и присоединяют к контактным штырькам корпуса. Осуществляют испытание схемы. Затем корпус герметизируют и маркируют, т.е. указывают нужные условные обозначения.

Разновидность гибридных ИС – так называемые микросборки. Обычно в их составе разные элементы, составляющие и интегральные схемы. Особенность микросборок состоит в том, что они являются изделиями частного использования, т.е. изготовляются для конкретного типа аппаратуры. А обычные ГИС представляют собой изделия общего использования, пригодные для разных видов аппаратуры. Иногда микросборками также называют наборы нескольких активных либо пассивных элементов, находящихся в одном корпусе и имеющих самостоятельные выводы. Иначе эти наборы еще называют матрицами.

При изготовлении полупроводниковых приборов и ИС для получения омических контактов к кремнию, межсоединений и контактных площадок, а также электродов затвора МОП структур широкое распространение получили пленки алюминия, что обусловлено следующими достоинствами этого металла: ‒ низкой стоимостью Аl и возможностью использования для всех процессов металлизации одного металла, что значительно упрощает и удешевляет технологию и предотвращает возникновение гальванических эффектов; ‒ высокой электропроводностью пленок Аl, близкой к электропроводности объемного материала; легкостью испарения Аl в вакууме из вольфрамовых тиглей и электронно-лучевых испарителей; ‒ высокой адгезией А1 к кремнию и его окислам; низкоомностью контакта Аl с кремнием р - и n -типов проводимости; ‒ заметной растворимостью кремния в Аl с образованием твердого раствора, почти не уменьшающего электропроводности; ‒ отсутствием в системе Аl‒Si химических соединений; ‒ химическим взаимодействием А1 с SiО2, частично остающимся на контактных площадках; химической стойкостью А1 в окислительной среде и радиационной стойкостью; ‒ легкостью проведения фотолитографических операций для получения конфигурации проводящих дорожек с использованием травителей, не реагирующих с кремнием и двуокисью кремния; хорошей пластичностью Аl и устойчивостью к циклическим изменениям температуры. Наряду с перечисленными достоинствами металлизация алюминием обладает рядом существенных недостатков, важнейшими из которых являются следующие: ‒ малая величина энергии активации атомов А1, вызывающая электромиграцию при плотностях тока примерно 106 А/см2 и повышенных температурах, в результате чего появляются пустоты в пленках; ‒ возможность короткого замыкания через диэлектрик в многоуровневых системах металлизации вследствие образования острых выступов на пленке в результате электромиграции и рекристаллизации А1; ‒ опасность гальванической коррозии Аl при одновременном использовании других металлов; ‒ большая скорость диффузии А1 по границам зерен, не допускающая использования приборов с металлизацией А1 при температурах более 500°С; ‒ интенсивное химическое взаимодействие Аl с двуокисью кремния при температуре около 500°С; ‒ низкая точка плавления в эвтектике систем алюминий‒кремний (около 577°С); ‒ большое различие (в 6 раз) коэффициентов термического расширения Аl и кремния; ‒ мягкость А1 и, следовательно, невысокая механическая прочность пленок; ‒ невозможность присоединения выводов с помощью пайки; ‒ высокое пороговое напряжение в МОП структурах в связи с большой работой выхода. Из-за перечисленных недостатков алюминиевая металлизация не применяется в ИС и транзисторах с мелкими эмиттерными переходами, а также в МДП ИС для создания затворных электродов. Для этой цели применяют, однослойные и многослойные системы из различных металлов (в том числе А1 для получение верхнего слоя). Наиболее подходящими материалами являются вольфрам и молибден. В частности, вольфрам имеет практически одинаковый с кремнием ТКС, хороший омический контакт к кремнию р - и n - типов проводимости, малое (в 2,5 раза) отличие от алюминия по электропроводности, самое высокое из всех металлов значение энергии активации при самодиффузии, высокую температуру плавления эвтектики с кремнием, химическую инертность на воздухе и в водном растворе плавиковой кислоты, а также высокую твердость, что исключает возможность появления царапин на пленке. Благодаря высокой температурной стойкости W его можно использовать для многоуровневой металлизации, чередуя слои двуокиси кремния с W. При термообработке на поверхности пленки не образуются холмики и нет опасности короткого замыкания между токоведущими дорожками в многослойной металлизации. Кроме того, пленки W (так же как и пленки Мо) являются металлургическим барьером, препятствующим образованию межкристаллической структуры кремния и алюминия. Недостатком металлизации W является трудность получения пленок (для чего обычно используется пиролиз гексофторида вольфрама) и их травления (в щелочном растворе ферроцианида). Оба эти процесса сложны и проводятся с использованием токсичных веществ. Кроме того, непосредственно к вольфраму невозможно подсоединить внешние выводы, поэтому поверх него на контактные площадки и наносят какой-либо другой металл (Рt, Ni, Аu, Сu, А1 и др.). 10.2.2. Подложки Материал, используемый для изготовления подложек, должен иметь однородный состав, гладкую поверхность (с чистотой обработки по 12‒14 классу), обладать высокой электрической и механической прочностью, быть химически инертным, обладать высокой теплостойкостью и теплопроводностью, коэффициенты термического расширения материала подложки и осаждаемой пленки должны быть близки по значению. Вполне понятно, что практически почти невозможно подобрать материалы для подложек, которые в равной степени пени удовлетворяли бы всем перечисленным требованиям. В качестве подложек для гибридных ИС использую ситаллы, фотоситаллы, высокоглиноземистую и бериллиевую керамику, стекло, полиимид, а также металлы, покрытые диэлектрической пленкой. Ситаллы ‒ это стеклокерамические материалы, получаемые путем термообработки (кристаллизации) стекла. Большинство ситаллов получено в системах Li2О-Аl2О3-SiO2-ТiO2 и RО-Al2О3-SiO2-ТiO2 (где RО ‒ оксиды СаО, МgО, ВаО). В отличие от большинства высокопрочных тугоплавких кристаллических материалов ситаллы обладают хорошей гибкостью при формировании. Они имеют низкие диэлектрические потери, по электрической прочности не уступают лучшим сортам вакуумной керамики, и по механической прочности в 2‒3 раза прочнее стекла. Из стекол в качестве подложек применяются аморфные силикатные стекла, бесщелочное, боросиликатное и кварцевое стекло. Керамические подложки находят ограниченное применение из-за высокой пористости. Достоинствами этих подложек являются высокая прочность и теплопроводность. Так, например, подложка из керамики на основе ВеО обладает в 200‒250 раз более высокой теплопроводностью, чем стекло, поэтому при напряженных тепловых режимах целесообразно применять бериллиевую керамику. Помимо бериллиевой керамики, применяются высокоглиноземистая (94% Аl2О3) керамика, плотный алюмооксид, стеатитовая керамика, а также глазурованная керамика на основе окиси алюминия. Микронеровности необработанной керамики в сотни раз больше, чем у стекла, и достигают нескольких микрометров. Они могут быть значительно снижены путем полировки, однако при этом существенно загрязняется поверхность керамики. Наличие загрязнений на подложке оказывает существенное влияние как на адгезию, так и на электрофизические свойства пленок. Поэтому перед осаждением приходится тщательно очищать подложки, а также защищать их от возможности появления масляных пленок, которые могут возникнуть в результате миграции паров рабочих жидкостей из насосов. Эффективным способом очистка является ионная бомбардировка поверхности подложки в плазме тлеющего разряда. Следует иметь в виду, что даже незначительное загрязнение может полностью изменить условия роста пленки. Если загрязнения располагаются на подложке в форме небольших изолированных друг от друга островков, то в зависимости от того, какая энергия связи больше ‒ между материалом пленки и материалом загрязнения или же между материалом пленки и подложкой ‒ пленка может образоваться либо на этих островках, либо на обнаженной части подложки. Адгезия пленки в очень сильной степени зависит от наличия окисного слоя, который может возникнуть в процессе осаждения между пленкой и подложкой. Такой окисный слой образуется, например, при осаждении железа и нихрома, чем и объясняется хорошая адгезия этих пленок. Пленки из золота, которое не подвержено окислению, имеют плохую адгезию, и поэтому между золотом и подложкой приходится создавать промежуточный подслой из материала с высокой адгезией. Желательно, чтобы образующийся слой окисла был сосредоточен между пленкой и подложкой. Если же окисел будет диспергирован по всей пленке или же будет располагаться на ее поверхности, то свойства пленки могут сильно измениться. На образование окислов сильное влияние оказывают состав остаточных газов в рабочем объеме установки и в особенности наличие паров воды. 10.2.3. Тонкопленочные резисторы Если еще недавно тонкопленочные резисторы использовались главным образом при изготовлении гибридных ИС, то за последние годы они все шире начинают применяться в производстве монолитных ИС по совмещенной технологии. Замена диффузионных резисторов на тонкопленочные дает целый ряд преимуществ: низкий температурный коэффициент сопротивления, низкую паразитную емкость, более высокую радиационную стойкость, более высокую точность номинала и др. Материалы, используемые при изготовлении резистивных пленок, должны обеспечивать возможность получения широкого диапазона стабильных во времени резисторов с низким температурным коэффициентом сопротивления (ТКС), обладать хорошей адгезией, высокой коррозионной стойкостью и устойчивостью к длительному воздействию повышенных температур. При осаждении материала на подложке должны образовываться тонкие, четкие линии сложной конфигурации с хорошей повторяемостью рисунка от образца к образцу. Резистивные пленки чаще всего имеют мелкозернистую дисперсную структуру. Наличие дисперсности в структуре пленок позволяет в первом приближении рассматривать их электросопротивление как суммарное сопротивление отдельных гранул и барьеров между ними, при котором характер общего сопротивления определяет величину и знак ТКС. Так, например, если преобладающим является сопротивление самих зерен, то проводимость пленки имеет металлический характер и ТКС будет положительным. С другой стороны, если сопротивление обусловлено прохождением электронов через промежутки между зернами (что обычно имеет место при малых толщинах пленки), то проводимость будет иметь полупроводниковый характер и ТКС соответственно будет отрицательным. В производстве монолитных ИС используются главным образом высокоомные резисторы. Для того чтобы резисторы имели минимально возможные габариты, они должны изготовляться с тем же разрешением и допуском, что и другие элементы ИС. Это исключает применение для получения требуемой конфигурации резисторов свободных металлических масок и позволяет осуществлять ее только с помощью фотолитографии. Процесс изготовления резисторов должен быть совмещен с основным технологическим процессом изготовления всей кремниевой ИС по планарной или эпитаксиально-планарной технологии. Так, например, резистивные пленки не должны быть чувствительны к присутствию на кремниевой пластинке нитрида кремния, фосфора, боросиликатного стекла и других материалов, используемых в производстве монолитных ИС. Они должны выдерживать сравнительно высокую температуру (500-550°С), которая имеет место в процессе герметизации ИС, и в некоторых случаях не должны изменять свои свойства под воздействием окислительной среды. В монолитных ИС для изготовления резисторов используются в основном нихром и тантал. При изготовлении гибридных ИС используется значительно более широкая номенклатура материалов для тонкопленочных резисторов. В качестве низкоомных пленок с R s от 10 до 300 Ом используются пленки хрома, нихрома и тантала. Получение пленок хрома с воспроизводимыми электрофизическими свойствами несколько затруднено его способностью образовывать соединения (особенно окисные) при взаимодействии с остаточными газами в процессе испарения и осаждения. Значительно более стабильными характеристиками обладают резисторы на основе хромоникелевого сплава (20% Сr и 80% Ni). Пленки тантала благодаря наличию различных его структурных модификаций имеют очень широкий диапазон поверхностных сопротивлений (от несколько Ом до нескольких МОм). В качестве высокостабильного резистивного материала применяется также нитрид тантала. Значительное расширение номиналов резисторов достигается путем применения металлокерамических пленок и пленок силицидов некоторых металлов. В этих системах в качестве металла чаще всего используется хром, а в качестве диэлектрика ‒ окислы, бориды, нитриды и силициды переходных металлов, а также окислы некоторых металлоидов. Пленки из дисилицида хрома, так же как и пленки из сплава кремния, хрома и никеля, имеют R s до 5 кОм. У пленок на основе системы хром‒моноокись кремния R s в зависимости от содержания хрома может изменяться от единиц до сотен Ом. 10.2.4. Тонкопленочные конденсаторы Тонкопленочиые конденсаторы, несмотря на кажущуюся простоту трехслойной структуры, являются наиболее сложными и трудоемкими по сравнению с другими пленочными пассивными элементами. В отличие от резисторов, контактных площадок и коммутации, при изготовлении которых достаточно произвести осаждение одного или двух слоев (подслоя и слоя), изготовление тонкопленочных конденсаторов требует по меньшей мере осаждения трех слоев: нижней обкладки, пленки диэлектрика и верхней обкладки (применение большего числа обкладок затрудняет процесс изготовления конденсаторов и увеличивает их стоимость). Материал, используемый для изготовления диэлектрических пленок, должен иметь хорошую адгезию с металлом, используемым для обкладок конденсатора, быть плотным и не подвергаться механическому разрушению при воздействии температурных циклов, обладать высоким пробивным напряжением и малыми диэлектрическими потерями, иметь высокую диэлектрическую проницаемость, не разлагаться в процессе испарения и осаждения и обладать минимальной гигроскопичностью. Самыми распространенными материалами, применяемыми в качестве диэлектрика в пленочных конденсаторах, являются моноокись кремния (SiО) и моноокись германия (GеО). В последние годы для этой цели стали применять алюмосиликатные, боросиликатные и антимонидогерманиевые стекла. Наиболее перспективными диэлектриками являются композиционные стеклообразные соединения, поскольку у них имеется возможность изменять в широких пределах электрофизические, физико-химические и термодинамические свойства путем подбора состава стекла и реализации особенностей агрегатного состояния стеклообразных систем в тонкопленочных структурах металл-диэлектрик-металл.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: