Лекция 17. 1. Корпускулярно-волновой дуализм является следствием более общего принципа дополнительности, сформулированном Н

Основные выводы.

1. Корпускулярно-волновой дуализм является следствием более общего принципа дополнительности, сформулированном Н. Бором.

Принцип дополнительности Н. Бора:

Для объяснения данного эксперимента следует использовать либо волновые, либо корпускулярные представления о природе света, но не те и не другие одновременно. Однако, и те, и другие необходимо учитывать для полного понимания природы света. Оба эти аспекта дополняют друг друга.

3. В рамках корпускулярно-волнового дуализма объекты природы, о которых мы говорим как о частицах (электроны, протоны, атомы), также должны обладать волновыми свойствами. По гипотезе, высказанной Луи де Бройлем длина волны частицы, имеющей импульс р, равна

, а частота .

4. Эксперименты по рассеянию электронов на кристаллах (Девиссон и Джермер) и на тонких металлических фольгах (Томсон, Тартаковский) установили дифракционный характер рассеяния, что подтверждает справедливость гипотезы де Бройля.

5. Принцип неопределенностей Гейзенберга

Микрочастицы ввиду наличия у них волновых свойств существенно отличаются по своим характеристикам от классических частиц. Для них неправомерно говорить об одновременном точном значении координат и импульсов. В. Гейзенберг, учитывая волновые свойства микрочастиц, пришел к выводу о невозможности одновременного точного определения координаты и импульса. При этом неопределенности в значениях этих величин удовлетворяют условиям Δ р Δ xh. Это выражение называется соотношением неопределенностей Гейзенберга. Соотношение неопределенностей является частным случаем более общего принципа дополнительности Бора. Из соотношения неопределенностей следует, что для микрочастицы нельзя ввести понятие траектории, аналогичное такому понятию в классической механике, поскольку нельзя одновременно точно определить импульс и координату.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t. Неопределенности этих величин удовлетворяют условию Δ E Δ th.

6. В атомной и ядерной физике принято измерять энергию в единицах, называемых электрон-вольт (эВ). 1 электрон-вольт — это энергия, приобретаемая электроном при ускорении его электрическим полем с напряженность 1 В. 1 эВ = 1,6.10–19 Дж. Часто используются более крупные единицы: килоэлектронвольт (1 КэВ = 103 эВ), мегаэлектрон-вольт (1 МэВ = 106 эВ), гигаэлектрон-вольт (1 ГэВ = 109 эВ), терраэлектрон-вольт (1 ТэВ = 1012 эВ). Массу элементарных частиц выражают, пользуясь соотношением между массой и энергией Е = m с2, при этом 1 эВ/с2 = 1,78.10–36 кг. В этих единицах масса электрона равна тe = 0,511 МэВ/с2, а масса протона тр = 938,27 МэВ/с2.

Постоянная Планка в этих же единицах равна ħ= 0,659.10–15 эВ.с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: