Режимы движения жидкостей

В 1880 г. Д.И.Менделеевым было высказано предположение о существовании двух отличающихся друг от друга режимов течения. В 1883 г. О. Рейнольдс экспериментально изучил эти режимы. Опыты показали, что при невысоких скоростях наблюдается ламинарное (слоистое) течение без перемешивания частиц и пульсаций скорости. Причем при течении отсутствует поперечное перемещение жидкости, ее частицы перемещаются почти по параллельным траекториям. При постоянном перепаде давления течение стационарно (не зависит от времени).

При значительных скоростях наблюдается течение, в котором частицы жидкости перемещаются по достаточно сложным траекториям. Скорости движения меняются по величине и направлению, поэтому в потоке возникают вихри. Слои жидкости перемешиваются, а отдельные частицы совершают неупорядоченное хаотическое движение по сложным траекториям. Такое течение называется турбулентным. Если в турбулентном потоке пустить по течению капельку красителя, то окрашивается все сечение потока.

О. Рейнольдсом было установлено, что ламинарный режим течения происходит при малых скоростях течения, поперечных размерах потока, плотностях и больших коэффициентах шероховатости. Турбулентные режимы течения характеризуются большой скоростью, большим поперечным размером и малой вязкостью текущей среды. Рейнольдсом было введено число, названное впоследствии числом Рейнолъдса (Re). Оно пропорционально отношению силы инерции к вязкости. В ходе испытаний было установлено, что в трубах круглого сечения напорных трубопроводов переход ламинарного течения в турбулентное происходит приблизительно при значении Re = 2300. При числах Re, меньших 2300, течение обычно бывает ламинарным, а при числах Re, больших 2300, – турбулентным. Критическое число Рейнольдса зависит от формы поперечного сечения канала. Для безнапорного течения в открытом русле Re = 900.

Примером турбулентного течения может служить процесс вытекания газообразных продуктов сгорания из трубы котельной или печной трубы.

Пример ламинарного течения – это истечение воды из крана умывальника, если открыть очень малую струйку воды. Большинство течений, окружающих нас в природе, турбулентные. Ламинарные течения встречаются только в очень узких каналах, какими являют ся капилляры кровеносных сосудов человека, или при течении жидкостей с большой вязкостью (например, мазута) в трубопроводах. Ньютон в 1686 г. сформулировал закон вычисления касательной силы трения, действующей на единицу площади жидкости или стенки твердого тела, находящегося в жидкости, который был экспериментально доказан в 1883 г. профессором Н. П. Петровым. С его помощью можно определить, при каком значении коэффициента вязкости произойдет переход ламинарного течения в турбулентное.

Для воды коэффициент вязкости в системе СИ при температуре 20 °С равен 1Q-6 м2/с.

В протяженных трубопроводах становятся существенными потери напора за счет трения жидкости о стенку трубы, приводящие к превращению части механической энергии в теплоту. Эта часть потерь напора называется потерями напора по длине трубы. К потерям напора приводят также повороты, резкие сужения, расширения и другие изменения геометрии трубы, способствующие вихреобразованию. Эти препятствия потоку называются местными сопротивлениями. Значения коэффициентов местного сопротивления приведены в справочной литературе.

7.4. Истечение жидкости из отверстий через водосливы.
Гидравлический удар в трубопроводах

Истечение жидкости из отверстий. Струя, вытекающая из отверстия, преодолевает местные сопротивления. При вытекании струи через отверстие, имеющееся в вертикальной стенке емкости, на некотором расстоянии от него происходит сжатие ее поперечного сечения. По характеру сжатие бывает полным, если струя сжата по всему периметру отверстия, и неполным, если струя не имеет бокового сжатия с одной или нескольких сторон, например если отверстие примыкает к стенке или ко дну сосуда, которые при этом являются направляющими для вытекающей струи.

Полное сжатие будет совершенным, если отверстие расположено на значительном расстоянии от боковых стенок и дна сосуда (они не оказывают влияния на сжатие струи), и несовершенным, если на него оказывают влияние стенки или дно сосуда.

Насадкой называют короткую трубу, присоединенную к отверстию в тонкой стенке. Длина насадка равна трем–пяти диаметрам отверстия. По форме насадок может быть внешним цилиндрическим, внутренним цилиндрическим, коническим сходящимся, коническим расходящимся и коноидальным.

Водосливом называют сооружение (стенку), через которое происходит перелив жидкости. По форме выреза в стенке водосливы бывают прямоугольными, трапецеидальными, треугольными, круглыми, параболическими и т.д. По условиям бокового сжатия потока различают водосливы без бокового сжатия, когда ширина русла равна ширине водослива, и водосливы с боковым сжатием – ширина русла больше ширины водослива. При проектировании водослива рассчитывают объемный расход жидкости, через водослив, который определяется как объем жидкости, истекающей из прямоугольного отверстия.

Гидравлический удар в трубопроводах. Называя жидкость несжимаемой или капельной, имеют в виду малую ее сжимаемость по сравнению с газами. При изменении давления на 0,1 МПа объем жидкости изменяется всего на сотые доли процента. Есть, однако, процессы, при которых и эти изменения объема существенны и ими нельзя пренебрегать. К их числу относится большая группа динамических процессов, связанных с распространением волн давления в трубопроводах, в частности явление гидравлического удара.

В напорном трубопроводе при внезапном изменении скорости движения жидкости, мгновенной остановке или появлении движения возникает гидравлический удар, сопровождающийся резким повышением и понижением давления. Например, при мгновенной остановке движения жидкости, когда кинетическая энергия переходит в работу сил давления, т.е. жидкость оказывается сжатой, в трубопроводе возникает удар непосредственно у крана. Ударная волна распространяется по жидкости с постепенным затуханием колебаний.

Возникающее добавочное давление внутри трубопровода может привести к разрыву стыковых соединений, арматуры, стенки трубопровода. Если трубопровод перекрыт с обеих сторон, то наблюдается постепенное затухание ударной волны. При наличии свободной поверхности (бака) волна затухает сразу.

На явлении гидравлического удара основано действие некоторых механизмов, например гидравлического тарана, поднимающего воду в горных местностях.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: