double arrow

Бесконечно большие функции и их связь с бесконечно малыми

Эквивалентные бесконечно малые. Таблица эквивалентных бесконечно малых

Существуют постоянные такие, что для всех из проколотой окрестности точки имеет место неравенство

Замечание 1. Если функция удовлетворяет условию, записанному в рамке,то ее называют функцией класса и пишут Функции класса обладают следующими очевидными свойствами.

Теорема 2. Если и то

5. Бесконечно малые функции и их свойства

Определение 3. Функция называется бесконечно малой функцией в точке или функцией класса, если При этом пишут Таким образом,

Например, функция а функции не являются функциями класса

Теорема 3. Имеют место следующие свойства класса

Если то т.е.

Доказательство. Свойство очевидно. Докажем свойство (другие свойства доказываются аналогично). Пусть и Тогда для произвольного существуют числа такие, что

Выберем Тогда будут иметь место одновременно неравенства (2) и (3). Складывая их, получим, что

Это и означает, что т.е. верно свойство. Теорема доказана.

Следующая теорема устанавливает связь между бесконечно малыми функциями и функциями, имеющими предел при

Теорема 4. Если существует (конечный) предел то Обратно: если функция представляется в виде то имеет предел в точке и

Доказательство. Существование предела эквивалентно высказыванию

Высказывание (4), в свою очередь, эквивалентно тому, что функция т. е. что Теорема доказана.

Замечание 2. Равенство называют асимптотическим разложением функции имеющей предел в точке

И, наконец, дадим определение предела функции в бесконечности. Сделаем это кратко.

Определение 4. Множества

называются окрестностями точек соответственно. Следующие высказывания являются определениями предела функции в бесконечности:

Перейдем теперь к обоснованию арифметических действий над пределами.

Теорема 5. Если существуют (конечные) пределы то и существуют пределы при этом

Если (кроме существования пределов и) выполняется ещё условие то существует предел причем

Доказательство. Докажем, например, теорему о пределе произведения. Так как существуют пределы то по теореме 4 имеют место асимптотические разложения Умножая эти равенста друг на друга, будем иметь Поскольку то (см. теорему 3). Далее, поскольку то функция представляется в виде По теореме 14 отсюда следует, что существует предел произведения при и он равен

Теорема доказана.

Введем следующее понятие. Пусть конечная или бесконечная точка и пусть функ-

ции и определены в некоторой проколотой окрестности точки

Определение 4. Две бесконечно малые функции и (при) называются

эквивалентными, если в некоторой проколотой окрестности и если

При этом пишут:

Важность этого понятия становится ясной при формулировке следующего утверждения.

Теорема 6. Если и если существует предел то существует и предел и он также равен числу

Доказательство. Переходя в тождестве

к пределу при и учитывая, что получаем утверждение теоремы.

Используя эту теорему, а также таблицу эквивалентных бесконечно малых:

Таблица 1.

Если при то при верны следующие соотношения:

const.

можно без особого труда вычислять пределы конкретных функций.

Пример 1.

Пусть функция определена в некоторой проколотой окрестности точки

Определение 5. Функция называется бесконечно большой функцией (ББФ) при если для всякого существует число такое, что

При этом пишут

Заметим, что – это не число, а символ, поэтому бесконечный предел – это всего лишь обозначение бесконечно большой функции. Тем не менее при вычислениях удобно относиться к бесконечному пределу как к обычному, хотя для бесконечных пределов и существуют свои правила действий, несколько отличные от правил действий над конечными пределами (см. ниже таблицу 2).

Если функция сохраняет знак в некоторой проколотой окрестности точки и является при этом бесконечно большой функцией, то естественно писать

(в зависимости от знака функции в указанной окрестности). Более точно:

В этих определениях и определении 5 фигурирует окрестность

конечной предельной точки Почти дословно определяются бесконечно большие функции на бесконечности. В этом случае под точкой следует понимать один из символов: а под окрестностью окрестность соответствующей бесконечно удаленной точки Например,

Нетрудно доказать следующее утверждение.

Теорема 7. Пусть функция не обращается в нуль в некоторой проколотой окрестности точки Тогда справедливо высказывание

Иначе говоря, для того чтобы функция была бесконечно малой при необходимо и достаточно, чтобы обратная к ней по величине функция была бесконечно большой при

Используя эту теорему, можно доказать истинность следующих операций над бесконечно большими функциями:

Таблица 2

И, наконец, отметим ещё ряд свойств, связанных с пределами функций.

Теорема 7 (о пределе промежуточной функции). Пусть в некоторой окрестности точки выполняются неравенства и пусть, кроме того, крайние функции имеют пределы в точке и эти пределы равны друг другу, т.е.

Тогда существует предел промежуточной функции и он равен т. е.

Теорема 8. Пусть в некоторой окрестности точки выполняются неравенства и пусть существуют пределы

Тогда (докажите это утверждение самостоятельно).

Теорема 9 (о знаке предела). Если в некоторой проколотой окрестности функция неотрицательна (неположительна) и существует предел то (соответственно).

В тех случаях, когда при вычислении того или иного предела непосредственный переход к пределу при приводит к одному из символов типа

возникает ситуация, в которой становятся неприменимы теоремы об арифметических действиях над пределами. В таких случаях возникает неопределенность при решении вопроса о существовании предела или его величины. Эта неопределенность может быть снята после некоторых тождественных преобразований. В этом случае говорят, что тождественные преобразования приводят к раскрытию неопределенности. Поясним сказанное примером.

Пусть требуется вычислить предел Если в указанном отношении мы сразу же перейдем к пределу, то получим неопределенность типа Что скрывается под этим символом, мы пока не знаем. Попрубуем избавиться от неопределенности. Применим для этого таблицу 1 стандартных асимптотических разложений и теорему 5. Получим

Последнее отношение уже не содержит неопределенности. Воспользовавшись теоремой 11.5 о переходе к пределу в частном двух функций, найдем, что

Лекция 2. Односторонние пределы функции в точке. Непрерывность функции. Разрывные функции и классификация точек разрыва. Производная функции, ее геометрический и физический смысл. Производная сложной функции. Таблица производных


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: