Одноканальная СМО с ожиданием

На СМО поступает поток заявок с интенсивностью l, интенсивность обслуживания m (т.е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок в единицу времени), n=1. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания. Предположим, что количество мест в очереди ограничено числом m (в дальнейшем, при m®¥ можно получить характеристики одноканальной СМО без ограничений по длине очереди). Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

S0 – канал свободен; S1 – канал занят, очереди нет; S2 – канал занят, одна заявка стоит в очереди; Sk – канал занят, k -1 стоят в очереди; Sm+1 – канал занят, m заявок стоят в очереди. Граф состояний (размеченный) имеет вид:

 
 


Снова схема гибели и размножения. Пользуясь общим решением, напишем выражения предельных вероятностей состояния:

или (9.9).

В знаменателе выражения для р0 стоит геометрическая прогрессия, суммируя её находим

(9.10).

(9.10) справедливо только при (иначе неопределенность вида ). Но сумму геометрической прогрессии со знаменателем найти ещё проще, чем по (9.10); она равна (m+2) и в этом случае p0=1/(m+2) {то же самое получится, если раскрыть неопределенность по правилу Лапиталя}.

Определим характеристики СМО: Ротк q, А, среднюю длину очереди , среднее число заявок, связанных с системой .

Очевидно, заявка получает отказ только в том случае, когда канал занят и все m мест в очереди – тоже:

(9.11).

(9.12).

А=lq. Найдем среднее число , находящихся в очереди; определим эту величину как математическое ожидание дискретной случайной величины R – числа заявок, находящихся в очереди:.

.

Выведем формулу для суммы. Эта сумма не что иное, как производная по r суммы , а для этого выражения мы можем воспользоваться формулой суммы геометрической прогрессии:

Продифференцируем её по r и проведя преобразования, найдем

(9.13).

Тогда .

Подставляем p0 из (10) и получаем

(9.14).

Выведем теперь формулу для . Рассмотрим общее число заявок К, связанных с системой, как сумму двух случайных величин: числа заявок, стоящих в очереди и числа заявок, находящихся под обслуживанием: .

По теореме сложения математических ожиданий:

, где - среднее число заявок в очереди; - среднее число заявок под обслуживанием. Найдем . Т.к. канал у нас один, то случайная величина может принимать только два значения: 0 или 1. Значение 0 она принимает, если канал свободен; вероятность этого равна . Значение 1 она принимает, если канал занят; вероятность этого равна .

Отсюда находим:

.

, где находим из (9.14).

Выведем выражение еще для одной существенной характеристики СМО с ожиданием: среднего времени ожидания заявки в очереди. Обозначим его . Пусть заявка приходит в систему в какой-то момент времени. С вероятностью p0 канал обслуживания не будет занят и ей не придется стоять в очереди (tож=0). С вероятностью p1 она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени 1/m (среднее время обслуживания одной заявки). С вероятностью p2 в очереди перед ней будет стоять еще одна заявка и время ожидания в среднем будет 2/m и т.д. Вообще, с вероятностью pk пришедшая заявка застанет в системе k заявок и будет ждать в среднем k/m единиц времени (1£k£m). При k=m+1 (в очереди m заявок, вероятность этого pm+1) tож=0 (заявка не обслуживается).

.

Подставим сюда выражения для p1,p2,…pm из (9.9).

.

Преобразуем сумму в скобках, используя (9.13)

Или, выражая p0 через r

.

Сравнивая это выражение с (9.14), замечаем, что

, (9.15)

т.е. среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Выведем ещё одну формулу для среднего времени пребывания заявки в системе. Обозначим случайную величину – время пребывания заявки в СМОчерез Тсист .. Она складывается из двух слагаемых (тоже случайных):

Тсист.ож +, где Тож - время ожидания заявки в очереди, случайная величина, равная времени обслуживания Тоб, если заявка обслуживается и 0, если она не обслуживается (получает отказ). По теореме сложения математических ожиданий: , но в наших обозначениях , а . Отсюда находим: или с учетом (9.15)

.

Формула Литтла (первая): для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.

Формула Литтла (вторая): для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в очереди равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Теперь можно рассмотреть работу одноканальной СМО с ожиданием при m®¥ (неограниченная очередь). Совершить предельный переход m®¥. Можно рассмотреть работу многоканальной СМО с ожиданием. Состояние системы будем нумеровать по числу заявок, связанных с системой:

S0 – все каналы свободны;

S1 – занят один канал, остальные свободны;

… … …

Sk – заняты k каналов, остальные свободны;

… … …

Sn – заняты все n каналов;

Sn+1 – заняты все n каналов, одна заявка стоит в очереди;

… … …

Sn+r – заняты все n каналов, r заявок в очереди;

… … …

Sn+m – заняты все n каналов, m заявок в очереди.

Размеченный граф состояний имеет вид

 
 


Написать уравнения Колмогорова. Найти вероятности состояний. В их помощью рассчитать все интересующие величины. Затем опять можно рассмотреть и случай m®¥.

Можно рассмотреть СМО с ограниченным временем ожидания (на каждую заявку, стоящую в очереди действует как бы «поток уходов» с интенсивностью (- среднее время пребывания в очереди)).

 
 


Существуют и другие разновидности СМО: замкнутые СМО (интенсивность потока поступающих заявок зависит от состояния самой СМО), СМО с «взаимопомощью» между каналами (незанятые каналы «помогают» занятому в обслуживании).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: