Доказательство. Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1

Пусть f¢(x1) = 0 и f¢¢(x1)<0. Т.к. функция f(x) непрерывна, то f¢¢(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1, но f¢(x1)=0, т.е. f¢(x) > 0 при х<x1 и f¢(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная f¢(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.

Выпуклость и вогнутость кривой.

Точки перегиба.

Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

у

x

На рисунке показана иллюстрация приведенного выше определения.

Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке.

Уравнение кривой: y = f(x);

Уравнение касательной:

Следует доказать, что .

По теореме Лагранжа для f(x) – f(x0): , x0 < c < x.

По теореме Лагранжа для

Пусть х > x0 тогда x0 < c1 < c < x. Т.к. x – x0 > 0 и c – x0 > 0, и кроме того по условию

, следовательно, .

Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то

.

Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

Теорема доказана.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: