Нанотехнологии

Нанотехнологии — это совокупность методов и приемов, обеспечивающих возможность создавать и модифицировать объекты с размерами менее 100 нм. При помощи нанотехнологий изготовляют наноматериалы, а в будущем, возможно, будут производить и нанотехнику.

История нанотехнологий начинается в 1959 году с доклада нобелевского лауреата по физике Ричарда Фейнмана, предложившего метод поатомной(помолекулярной) сборки. Главная идея такой сборки состоит в изготовлении деталей из элементарных «кирпичиков» вещества — атомов или молекул. Такой путь производства отличается от принятого в настоящее время, когда детали получают из естественных, природных материалов путем отделения от заготовок избыточного материала.

Приставка «нано» (от греч. nanos— «карлик») означает миллиардную (Ю-9) долю чего-либо; нанометр — это миллиардная часть метра, или тысячная часть микрометра. Нанометр сопоставим с размером молекулы. Для сравнения: тонкий человеческий волос имеет толщину около 50000 нм.

Несмотря на то что история нанотехнологий насчитывает уже полвека, реальное их применение стало возможно только в последнее десятилетие. Особенно большие успехи достигнуты в области создания наноматериалов, которые обладают качественно новыми свойствами, в том числе искусственно заданными функциональными и эксплуатационными характеристиками.

Наноматериал — это материал, содержащий микроскопические искусственно синтезированные структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм. Благодаря этому физико-механические, тепловые, электрические, магнитные, химические и другие свойства наноматериалов радикально отличаются от обычных свойств макроскопических материалов. Поэтому нанопорошки, нанопленки, нанопокрытия и другие нанопродукты по своим качествам сильно отличаются от свойств веществ, из которых они получены.

Самым известным наноматериалом является фуллерен — открытая в 1985 году новая кристаллическая модификация углерода (ранее известные его модификации — графит и алмаз). Молекула фуллерена содержит от 36 до 540 атомов углерода. Получают фуллерены из сажи от сжигания графита.

Рассмотрим строение наиболее изученного фуллерена С60, молекула которого состоит из 60 атомов углерода. Этот фуллерен представляет собой сферу, образованную 20 шестиугольниками и 12 пятиугольниками (как футбольный мяч), в вершинах которых находятся атомы углерода. Диаметр такой молекулы 0,7 нм. В центре сферы имеется свободное, не занятое атомами пространство. В него можно ввести другие атомы и молекулы, например лекарства, и транспортировать их в этой оболочке к нужному месту в организме.

Если в «углеродный шарик» —фуллерен С60 — вставить «поясок из 10 атомов, получится новая, слегка удлиненная молекула — С70. Изучение фуллеренов привело исследователей к созданию нанотрубок, поверхность которых образуется правильными углеродными шестиуголньниками. Эти трубки-молекулы, длиной до миллиметра и диаметром в несколько нанометров, могут в зависимости от условий получения быть прямыми спиральными, состоять из одного или нескольких слоев (вложенных друг в друга трубок), иметь открытые или закрытые концы, содержать до миллиона атомов – С1000000.

Углеродные нанотрубки обладают очень высокой прочностью — в 50 - 100 раз прочнее стали (при плотности, в 6 раз меньшей, чем у стали). Нити нанотрубок не боятся высоких температур, могут выдерживать действие ваккума и химических реагентов. Подобная нить диаметром 1 мм может выдержать груз в 20 т! Используя нанотрубки в качестве осей и надев на них колеса – фуллерены, удалось изготовить прообраз нанотехники — наномобиль, передвигающийся по поверхности кристаллов.

Интересно, что при введении молекулы фуллерена внутрь нанотрубки свойства последней кардинально меняются. В зависимости от расположения фуллерена в нанотрубке (в центре, ближе к краю и т. д.) система может проявлять свойства проводника, полупроводника или диэлектрика. В будущем это может стать основой для создания сверхминиатюрных компьютеров, построенных на транзисторах размером в единицы нанометров и скоростью переключения состояния 10 пикосекунд (1 пкс = 10-12с). Применение нанотрубок в будущем позволит изготовить мониторы с размером пикселя порядка микрометра и электрические провода, способные передавать огромные точки – 10 7 А/см 2.

Широкое применение в нанотехнологиях нашли специальные сканирующие зондовые микроскопы (СЗМ), позволяющие «увидеть» нанообъект. Работа этих микроскопов основана на измерении магнитных, электрических и других сил, возникающих между атомами. Микроскопы СЗМ производят измерения при помощи иглы (с острием размером в один атом), которой «ощупывают» поверхность материала. Компьютер анализирует перемещения и строит на экране картинку, изображающую рельеф поверхности. Таким образом можно видеть атомы и молекулы.

Современные СЗМ умеют измерять не только линейные размеры объектов, но также их магнитные и электрические свойства, твердость, состав

«с характеристики материалов в наномстровых объемах.

На базе СЗМ созданы технологии манипулирования отдельными атомами. С помощью иглы микроскопа можно опознать атом, переместить его на другое место (фигура на рис. 21 собрана из атомов). Располагая атомы на поверхности детали тем или иным образом, можно придавать ей нужные свойства.

Предполагается, что наиболее полно нано- технологии будут реализованы при использовании специальных наномашин — ассемблеров. Ассемблер — это своеобразный сборщик атомов и молекул. Он должен захватывать их, соединять между собой и с базовой поверхностью, а также выполнять другие манипуляции в соответствии с заданным алгоритмом.

Внешне такой ассемблер можно представить себе в виде паука нанометрового размера с несколькими «руками»-манипуляторами длиной в сотню атомов. В теле этого «паука» должны размещаться устройства, управляющие работой манипулятора и содержащие программу всех его действий. Одними «лапами» он будет держаться за поверхность, а другими — атом за атомом складывать сложные молекулярные структуры или устройства из «наноблоков».

Примечательно, что ассемблеры будут обладать способностью к размножению, т. е. смогут копировать себя, создавая себе подобных. Управлять ассемблерами будет человек — оператор, моделирующий на компьютере требуемую молекулярную структуру.

На первый взгляд, создание наномашин кажется научной фантастикой, однако такие машины превосходно функционируют уже тысячи лет. Примером может служить механизм синтеза белка в живом организме, осуществляемый рибосомами с помощью молекул РНК по программе, взятой из ДНК.

Перспективы применения нанотехнологий поражают воображение.

Перечислим некоторые из них.

Нанотехнологии позволят:

□ заменить традиционные методы производства изделий их наносборкой непосредственно из атомов и молекул;

□ создать молекулярных роботов-врачей, которые будут «жить» внутри человеческого организма, устраняя все возникающие повреждения;

□ изготовлять продукты питания при помощи ассемблеров, которые будут воспроизводить те же химические процессы, что и в живом организме, однако более коротким и эффективным путем. Например, получение молока из травы, минуя корову! Такое производство, не зависящее от погодных условий и не нуждающееся в тяжелом физическом труде, решит продовольственную проблему;

□ осуществить фантастическую идею «космического лифта» из нано- трубок (представьте себе канат, соединяющий землю с космическим аппаратом, по которому скользит лифтовая кабина);

□ устранить вредное влияние человека на окружающую среду за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологии полного разложения существующих отходов с помощью дизассемблеров, — наноустройств, разбирающих вещество на атомы;

□ перейти от двумерной технологии изготовления процессоров к трехмерной технологии и добиться размещения 1012 логических элементов в 1 см3. Другими словами, разместить процессор Intel Pentium II в кубе с ребром 100 нм.

Нанотехнологии, наноматериал, ассемблер, дизассемблер, нанотехника.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: