Общая характеристика реляционной модели данных

Вывод,

1)Точность вычисления С.К.П. в этом случае достигает 25% от её величины.

2)При восьми измерениях можно получить надёжный результат вычислений по формуле.

3)Для более точных измерений углов необходимо использовать теодолиты большей
точности.

3. По величине С.К.П. можно определить предельную погрешность , которая может иметь при данных условиях измерений.

В теории вероятностей доказывается, что при достаточно большом числе измерений
случайная погрешность может быть: с вероят. 0,950


— больше 2m в 5 случаях из 100 измерений.

— больше Зm в 3 случаях из 1000 измерений.

с вероят. 0,0997

Поэтому можно принять

или


2m— устанавливают при высокоточных измерениях

3m в остальных случаях.

Выводы:

1)Исходя, из указанных достоинств С.К.П. принимается для оценки геодезических измерений в качестве основной меры точности.

2)Характеризуя точность измерения С.К.П. (m), необходимо также указывать и С.К.П. () вычисления С.К.П.

3)Числовые значения средней, С.К.П., и предельной погрешности достаточно вычислять до двух значащих цифр.

=0,35 или т =2,3)

4)Среднюю С.К.П., погрешность называют абсолютными погрешностями, т.к. на их значение не влияет величина измеряемой величины.

Относительная погрешность
используется в тех случаях, когда на точность измерения влияет и размер определяемой величины.

Рассмотрим результаты измерений двух линий:

= 350,10м. 0,35м.

= 800,25м. 0,40м.

Рассмотрим:

а) абсолютные погрешности измерений:

- 1-я линия измерена точнее, чем вторая, т.к.

б) вторая линия длиннее первой и очевидно погрешность измерения линии будет зависеть от её длины.

Поэтому для оценки точности длин линий пользуются относительной погрешностью.
Относительная погрешность — выражает отношение абсолютной погрешности измерения
(m или ) к значению самой измеряемой величины.

Относительную погрешность обычно представляют дробью, числитель которой равен 1, а
знаменатель частное отделение длины линии на абсолютную погрешность.

Оценка измерений длин линий.


Вывод:

- вторая линия измерена точнее первой, хотя

- относительные погрешности не применяют при оценке точности угловых измерений,
поскольку погрешность измерения угла, не зависит от его величины.


Арифметическая середина и оценка её точности.

Имеется ряд равноточных измерений величины и её истинное значение, т.е.: - - Х.

Согласно определению случайной погрешности
(=1-Х) или (1-Х=)
можно написать для ряда случайных погрешностей

………….


Сложим почленно эти равенства
[ l ] —= []
после чего разделим их на n измерений


обозначим

Величина является арифметической серединой или средним арифметическим из результатов измерений l, тогда

или



Вывод.

1)Так согласно 3-го свойства случайных погрешностей равноточных измерений , то арифметическая середина стремится к истинному значению при возрастании числа измерений

2)На практике выполняют небольшое количество измерений. Тем не менее,и в этих случаях принято считать арифметическую середину из равноточных измерений наиболее надёжным результатом таких измерений.


Отклонения, или вероятнейшие погрешности.
Истинное значение измеряемой величины, как правило неизвестно.

Поэтому случайные погрешности не могут быть вычислены по формуле

,

а значит не может быть вычислена и С.К.П. отдельного измерения по формуле .

Тогда оценку точности измерений проводят по отклонениям или вероятнейшим погрешностям отдельных измерений от арифметической середины:


Для установления свойств отклонений:

- сложим почленно эти равенства

- разделим почленно на n

- так как = X0 или

поэтому =0

Сумма отклонений измеренных значений от арифметической середины равна нулю. Отклонение называется вероятнейшими погрешностями.

По отклонениям вычисляют С.К.П. отдельного измерения по формуле Бесселя.

(n-1)- число избыточных измерений

Кроме того, необходимо вычислить:

1)С.К.П. самой С.К.П. m в этом случае определяется по формуле

2)С.К.П. М арифметической середины вычисляют по формуле

,

где:

-m-С.К.П. отдельного измерения;

-n- число равноточных измерений.

Формула С.К.П. арифметического среднего, даёт возможность сделать практический вывод о том, что повышение точности путём многократных измерений одной и той же величины, выгодно только при небольшом числе измерений.

т =10”

Пример n=1;2;4;6;8;

М = 10”;7”;5”;4”;3”.

Поэтому в полевых геодезических работах средней точности число повторений не превышает 3-4 приемов.

Для существенного повышения точности нужно применить более точные приборы.
Вывод С.К.П. арифметической середины в раз меньше С.К.П. отдельного измерения.

3)С.К.П. самой С.К.П. М находят по формуле:


Средние квадратические погрешности

функций измеренных величин.

В практике измерений, часто приходится пользоваться величинами, которые не измеряются, а определяются на основании измеренных величин, т.е, являются некоторыми функциями.

Во всех таких случаях возникает задача вычислений С.К.П. функций, по известным С.К.П. измеренных величин (аргументов).

1)Дано U=х+у погрешности аргументов и

если каждый аргумент измерялся n раз.

…………………….

возведем равенства в квадрат и просуммируем


Разделив обе части на n

т.к.

согласно

-С.К.П. функции и аргументов.

Рассуждая аналогично, можно показать, что выражение справедливо и для функции u=x-y, а если то .

2) U=

обозначив то на основании

, если

С.К.П. функций измеренных величин.

Вид функции С.К.П. Примеры применения
при 1)С.К.П. измерения линии мерной лентой –m-С.К.П. отложения одной ленты -n- 2)С.К.П. определения превышения n при геометрическом нивелировании - ma - mb
С.К.П. измерения расстояния нитяным дальномером k=100 =3мм.(С.К.П. отсчета взятого по рейке)
Определение С.К.П. площади прямоугольника
a

b

 

З.Неравноточные измерения.


Измерения, выполненные с различной точностью, в различных условиях.

Степень надёжности результатов измерений выражают числом, называемым весом этого результата.

ЧЕМ НАДЕЖНЕЕ РЕЗУЛЬТАТ, ТЕМ БОЛЬШЕ ЕГО ВЕС.

Следовательно, вес связан с точностью результат измерений, которая характеризуется С.К.П.

Поэтому вес результата измерений принимают равным величине обратно
пропорциональной квадрату С.К.П. измерения.


,


где:

-р- вес результата измерений;

-с- произвольное, но одно и тоже число при вычислении всех весов в данной задаче
-m- С.К.П. измерения.

Веса результатов измерений

Для облегчения задачи отыскания весов обычно вес одного из результатов с погрешностью (мю) принимают за единицу и относительно его вычисляют веса
остальных результатов измерений.

откуда с =

тогда веса результатов наблюдений

Окончательный (наиболее точный) результат неравноточных измерений равен сумме произведений каждого из этих измерений на его вес делённый на сумму весов всех измерений.

— формула весового среднего или общей

арифметической середины.

Кроме того, необходимо найти:

- уклонения от измеренных величин



- С.К.П. единицы веса по формуле Бесселя


- С.К.П. общей арифметической середины

-С.К.П. определения самой средней квадратической погрешности М

Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода:

· структурной части,

· манипуляционной части

· и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, являются нормализованные n-арное отношения. По сути в предыдущей лекции мы рассматривали именно понятия и свойства структурной составляющей реляционной модели.

В целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД:

1. требованием целостности сущностей.

Конкретно требование состоит в том, что любой кортеж любого отношения должен быть отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом.

2. требованием целостности по ссылкам (внешним ключам).

Оно является несколько более сложным требованием. Сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений.

Пример: Надо реализовать

сущность ОТДЕЛ с атрибутами:

· ОТД_НОМЕР (номер отдела),

· ОТД_КОЛ (количество сотрудников)

· ОТД_СОТР (набор сотрудников отдела).

Для каждого сотрудника надо хранить:

· СОТР_НОМЕР (номер сотрудника),

· СОТР_ИМЯ (имя сотрудника)

· СОТР_ЗАРП (заработная плата сотрудника).

При правильном проектировании соответствующей БД в ней появятся два отношения:

ОТДЕЛЫ (

·

Значение атрибута СОТР_ОТД_НОМ в любом кортеже отношения СОТРУДНИКИ должно соответствовать значению атрибута ОТД_НОМ в некотором кортеже отношения ОТДЕЛЫ.
ОТД_НОМЕР, – первичный ключ

· ОТД_КОЛ)

и СОТРУДНИКИ (

· СОТР_НОМЕР, - первичный ключ

· СОТР_ИМЯ,

· СОТР_ЗАРП,

· СОТР_ОТД_НОМ)

Атрибут СОТР_ОТД_НОМ появляется в отношении СОТРУДНИКИ не потому, что номер отдела является собственным свойством сотрудника, а лишь для того, чтобы иметь возможность определить полную сущность ОТДЕЛ.

Атрибут такого рода называется внешним ключом - его значения однозначно определяет кортеж некоторого другого отношения (т.е. задает значение его первичного ключа). Другими словами, отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором такой же атрибут является первичным ключом.

Требование целостности по ссылкам (требование внешнего ключа) состоит в том, что для каждого значения внешнего ключа в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать). Для нашего примера это означает, что если для сотрудника указан номер отдела, то этот отдел должен существовать.

При обновлении ссылающегося отношения (вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа.

При удалении кортежа из отношения, на которое ведет ссылка, существуют три подхода:

1. заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (т.е. сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа).

2. при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным.

3. (каскадное удаление) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.

В развитых реляционных СУБД обычно можно выбрать способ поддержания целостности по ссылкам для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области.

В манипуляционной части реляционной модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств, а второй - на математической логике.

Все эти механизмы обладают одним важным свойством: они замкнуты относительно понятия отношения. Это означает, что выражения реляционной алгебры и формулы реляционного исчисления определяются над отношениями и результатом вычисления также являются отношения.

Алгебра и исчисление обладают большой выразительной мощностью: очень сложные запросы к базе данных могут быть выражены с помощью одного выражения реляционной алгебры или одной формулы реляционного исчисления. Именно по этой причине именно эти механизмы включены в реляционную модель данных. В реализациях конкретных реляционных СУБД сейчас не используется в чистом виде ни реляционная алгебра, ни реляционное исчисление. Фактическим стандартом доступа к реляционным данным стал язык SQL (Structured Query Language). Язык SQL представляет собой смесь операторов реляционной алгебры и выражений реляционного исчисления, использующий синтаксис, близкий к фразам английского языка и расширенный дополнительными возможностями, отсутствующими в реляционной алгебре и реляционном исчислении. Вообще, язык доступа к данным называется реляционно-полным, если он по выразительной силе не уступает реляционной алгебре (или, что то же самое, реляционному исчислению), т.е. любой оператор реляционной алгебры может быть выражен средствами этого языка. Именно таким и является язык SQL.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: