double arrow

Дефекты по Шоттки и Френкелю

Дефекты по Шоттки и Френкелю относятся к тепловым равно­весным дефектам, связанным с неупорядоченным расположением в решетке кристалла «собственных» частиц (атомов или ионов). Такое расположение возникает, если частица покидает свое регу­лярное положение в узле решетки, оставляя его незанятым (ва­кантным). Существует две возможности образования дефектов в решетке за счет перемещения частиц из ее узлов. Одна из них была постулирована Я. И. Френкелем, другая — В. Шоттки.

Атом или ион может переместиться из узла решетки, оставляя там вакансию, в междоузлие, удаленное от узла на некоторое расстояние.

Такой дефект в виде пары вакансия — междоузельный атом (ион) называется дефектом по Френкелю (рис. 11, а). Если атом (ион) покидает узел решетки, оставляя в нем вакансию, и уходит за пределы решетки на поверхность кристалла, достраи­вая ее, то в решетке остаются только вакансии. Такой тип дефекта в виде незанятых (вакантных) узлов решетки называется дефек­том по Шоттки (рис. 11,6).

Основной причиной образования дефектов по Френкелю и Шот­тки являются тепловые колебания атомов (ионов). Средняя амплитуда колебания атомов при обычных температурах сравнительно мала (≈ 5...10% от величины периода решетки).

/

Рис.11. Схематическое изображение дефектов по Френкелю (а) и по Шоттки (б) — идеальная решетка)

Однако атомы в решетке совершают тепловые колебания не строго согласованно, поэтому даже в этих условиях за счет энергетических флуктуации один из атомов может получить от соседних энергию, достаточную для его выхода из узла решетки. Тем более этот процесс происхо­дит при повышенных температурах, при которых амплитуда коле­бания атомов сильно возрастает. Таким образом, любой кристалл, находящийся при температуре, отличной от абсолютного нуля, всегда будет содержать определенное число указанных тепловых дефектов.




Для образования дефектов по Френкелю и Шоттки требуются определенные затраты энергии (энергии активации процесса обра­зования дефекта), однако оно сопровождается увеличением энтро­пии за счет возрастания степени разупорядоченности решетки, что вызывает уменьшение энергии Гиббса. Следовательно, образование подобных дефектов оказывается энергетически выгодным и приво­дит к повышению стабильности кристалла. Отсюда следует, что тепловые дефекты по Френкелю и Шоттки являются равновесными и каждой температуре соответствует их определенная равновесная концентрация в кристалле.



Из приведенных уравнений следует, что равновесная концентра­ция дефектов по Шоттки и Френкелю является экспоненциальной функцией температуры и энергии активации. Возрастание темпера­туры и соответственно уменьшение энергии активации приводят к увеличению равновесной концентрации дефектов.

Энергия активации процесса образования точечных дефектов зависит от их типа, химической природы вещества и его структуры, поэтому, хотя в решетке любого немолекулярного кристалла при­сутствуют одновременно все виды точечных дефектов, одни из них (с меньшей энергией активации) обычно преобладают над други­ми. Энергия образования дефектов по Шоттки при прочих равных условиях меньше, чем дефектов по Френкелю, поскольку размеще­ние атома в междоузлии требует обычно значительных энергетиче­ских затрат

Например, дефекты по Френкелю будут легче возникать в кристаллах со структурой, имеющей крупные пустоты, или тогда, когда размеры аниона и катиона сильно различаются, поскольку все это облегчает размещение катионов в междоузлиях.

Дефекты по Френкелю в чистом виде, т. е. когда число вакан­сий равно числу межузельных атомов, могут иметь место только в кристаллах стехиометрического состава, в реальных кристаллах с координационными решетками этого, как правило, не наблюдается. Дефекты по Шоттки могут возникать за счет образования как катионных, так и анионных вакансий. В ионных кристаллах часто оказывается энергетически более выгодным образование пар вакан­сий, т. е. образование вакантного узла на месте катиона и аниона, так как при этом легче сохраняется электронейтральность поверх­ности кристалла и решетки в целом. Однако в принципе это не обя­зательно и в реальных кристаллах равенство тепловых катионных и анионных вакансий может и не соблюдаться.

Точечные атомные дефекты в кристаллической решетке облада­ют определенными свойствами. Например, вакансии в ионных кри­сталлах выступают носителями заряда, причем катионная вакан­сия несет отрицательный, а анионная — положительный заряд. Ко­нечно, собственно заряд в вакансии не содержится, но возникающее вокруг нее электрическое поле такое же, какое возникло бы, если бы в вакансии располагался заряд, по значению равный, а по зна­ку противоположный заряду иона, который покинул данный узел решетки. Любые точечные дефекты обладают способностью к миг­рации (диффузии) в кристаллической решетке в результате тепло­вых флуктуации или приложения к кристаллу внешнего электриче­ского поля. Например, катион в междоузлии может переходить при соответствующем возбуждении в соседнее междоузлие, вакансии мигрируют за счет перемещения соседнего иона в вакантный узел, т. е. путем последовательного обмена позициями между ионами и вакансиями (при таком так называемом вакансионном механизме диффузии перемещение вакансий в одном направлении эквивалент­но перемещению ионов в другом). Точечные дефекты могут взаимо­действовать друг с другом, образуя в простейшем случае ассоциаты — дефекты, занимающие соседние кристаллографические позиции. Например, в решетке могут возникнуть связанные группы вакансий (кластеры). Связанные пары вакансий способны диф­фундировать быстрее, чем изолированные вакансии, а тройные кластеры еще быстрее.

Наличие в кристаллах точечных дефектов по Шоттки и Френ­келю оказывает существенное влияние на многие свойства кристал­лических тел. В частности, их присутствие в кристалле и способ­ность к миграции обусловливают ионную электрическую проводи­мость и процессы массопереноса (диффузии) в кристаллической ре­шетке (в бездефектном идеальном кристалле процесс массоперено­са практически невозможен). В связи с этим присутствие точечных дефектов сильно ускоряет такие важные в технологии силикатов и тугоплавких неметаллических материалов процессы, как твердофазовые реакции, спекание, рекристаллизацию и т. д., скорость ко­торых определяется скоростью диффузии материальных частиц. Образование дефектов по Шоттки приводит к возрастанию объема кристалла (кристалл как бы «распухает» за счет достраивания с поверхности атомами, удаляющимися из узлов решетки) и пониже­нию его плотности (образование дефектов по Френкелю во всяком случае в первом приближении не приводит к изменению плотности).






Сейчас читают про: