Лекции по гидравлике. г0 - касательные напряжения на боковой поверхности отсека жидкости

г0 - касательные напряжения на боковой поверхности отсека жидкости.

Касательные напряжения на периферии отсека жидкости (у стенки трубы) будут равны:

Очевидно, это будут максимальная величина касательных напряжений в отсеке жид­кости. Вычислим величину касательных напряжений на расстоянии г от оси трубы.

Таким образом, касательные напряжения по сечению трубы изменяются по линей­ному закону; в центре потока (на оси трубы) г=0 касательные напряжения т= 0.

Распределение скоростей в ламинарном потоке. Поскольку ламинарный поток жид­кости в круглой цилиндрической трубе является осе симметричным, рассмотрим, как и ранее, лишь одно (вертикальное сечение трубы). Тогда, согласно гипотезе Ньютона:

Отсюда видно, что распределение скоростей в круглой цилиндрической трубе соот­ветствует параболическому закону. Максимальная величина скорости будет в центре тру­бы, где= О

Средняя скорость движения жидкости в ламинарном потоке. Для определения вели­чины средней скорости рассмотрим живое сечение потока жидкости в трубе Затем прове­дём в сечении потока две концентрические окружности, отстоящие друг от друга на бес­конечно малое расстояние dr. Между этими окружностями мы, таким образом, выделили

малую кольцевую зону, малую часть живого сечения потока жидкости. Расход жидкости через выделенную кольцевую зону:

Расход жидкостичерез полное живое сечение трубы:

величина средней скорости в сечении:

Потери напора в ламинарном потоке жидкости. Для ламинарного потока жидкости в круглой трубе можно определить коэффициент трения через число Рейнольдса. Вычислим величину гидравлического уклона из средней скорости жидкости.

Отсюда:

Тогда:

Окончательно потери напора при ламинарном движении жидкости в трубе:

j

Несколько преобразовав формулу для определения потерь напора, получим формулу Пуазейля:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: