double arrow

Физическая среда передачи данных


Физическая передающая среда – это прежде всего кабели. Они бывают трех видов: витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Витая пара состоит из двух изолированных медных проводов, свитых между собой и помещенных в одну защитную оболочку. Скручивание уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Пример — телефонный кабель. Характеристики пары: размеры, тип изоляции, шаг скручивания. Витая пара может быть неэкранированной (UTP) и экранированной (STP).

Неэкранированная витая пара (UTP) широко используется в ЛВС, максимальная длина 100 м. UTP определена особым стандартом, в котором указаны нормативные характеристики кабелей для различных применений, что гарантирует единообразие продукции.

Экранированная витая пара (STP) помещена в медную оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому STP меньше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.

Преимущества витой пары – дешевизна, простота при подключении. Недостатки – нельзя использовать при передаче данных на большие расстояния с высокой скоростью.




Коаксиальный кабель обладает более высокой механической прочностью и помехозащищенностью. Существуют два типа коаксиальных кабелей: тонкий (спецификация 10Base2) диаметром 0,64 см и толстый (спецификация 10Base5) диаметром 1,27 см. Скорость передачи информации 10 – 50 Мбит/с.

Тонкий – гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого типа сети. Подключается непосредственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление – 50 ом.

Толстый – жесткий, диаметр 1,27 см (0,5"). Его иногда называют стандартный Ethernet (первый кабель в популярной сетевой архитектуре). Жила толще, затухание меньше. Передает сигнал без затухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление – 75 ом.

Для подключения к толстому коаксиальному кабелю применяется специальное устройство – трансивер (transceiver – приемопередатчик). Он снабжен коннектором, который называется вампир или пронзающий ответвитель. К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиального кабеля используются BNC-коннекторы (British Naval Connector). Применяются BNC-T-коннекторы для соединения сетевого кабеля с сетевой платой компьютера, BNC-баррел-коннекторы для сращивания двух отрезков кабеля, BNC-терминаторы для поглощения сигналов на обоих концах кабеля в сетях с топологией шина.

Оптоволоконныйкабель – самая удобная передающая среда. На него не действуют электромагнитные поля, он сам практически не излучает, поэтому обнаружить его трудно, что отвечает требованиям секретности. В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Данные могут передаваться на многие километры. Скорость передачи от 100 Мбит/с до 1 Гбит/с..



Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно – для передачи, другое – для приема.

Термин «беспроводная среда» не означает полное отсутствие проводов в сети. Обычно беспроводные компоненты взаимодействуют с сетью, в которой в качестве среды передачи используется кабель. Такие сети называют гибридными.

Беспроводная среда обеспечивает временное подключение к существующей кабельной сети, гарантирует определенный уровень мобильности и снижает ограничения на протяженность сети. Применяется в служебных помещениях, где у сотрудников нет постоянного рабочего места, в изолированных помещениях и зданиях, в строениях, где прокладка кабелей запрещена.

Существуют следующие типы беспроводных сетей: ЛВС, расширенные ЛВС и мобильные сети (переносные компьютеры). Основные различия между ними – параметры передачи. ЛВС и расширенные ЛВС используют передатчики и приемники той организации, в которой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети (например, телефонная или Internet).



ЛВС выглядит и функционирует практически так же, как и кабельная, за исключением среды передачи. Беспроводный сетевой адаптер с трансивером установлен в каждом компьютере, и пользователи работают так, будто их компьютеры соединены кабелем. Трансивер или точка доступа обеспечивает обмен сигналами между компьютерами с беспроводным подключением и кабельной сетью. Используются небольшие настенные трансиверы, которые устанавливают радиоконтакт с переносными устройствами.

Работа беспроводных ЛВС основана на четырех способах передачи данных: инфракрасном излучении, лазере, радиопередаче в узком диапазоне (одночастотной передаче), радиопередаче в рассеянном спектре.

Платы сетевого адаптера (СА) выступают в качестве физического интерфейса, или соединения, между компьютером и сетевым кабелем. Платы вставляются в слоты расширения материнской платы всех сетевых компьютеров и серверов или интегрируются на материнскую плату. Для обеспечения физического соединения между компьютером и сетью к разъему, платы подключается сетевой кабель.

Плата СА выполняет:

• подготовку данных, поступающих от компьютера, к передаче, по сетевому кабелю;

• передачу данных другому компьютеру;

• управление потоком данных между компьютером и кабельной системой;

• прием данных из кабеля и перевод их в форму, понятную процессору компьютера.

Плата СА должна также указать свое местонахождение или сетевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определены комитетом IEEE (Institute of Electrical and Electronics Engineers, Inc.), который закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов. Производители зашивают эти адреса в микросхемы, поэтому каждый компьютер имеет свой уникальный номер, т.е. адрес в сети.

Перед тем, как послать данные по сети, плата СА проводит электронный диалог с принимающей платой, в результате которого они устанавливают:

• максимальный размер блока передаваемых данных;

• объем данных, пересылаемых без подтверждения о получении;

• интервал между передачами блоков данных;

• интервал, в течение которого необходимо послать подтверждение;

• объем данных, который может принять плата без переполнения буфера;

• скорость передачи.

Если новая (более сложная и быстрая) плата взаимодействует с устаревшей (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат позволяют им приспособиться к низкой скорости старых плат. Каждая плата оповещает другую о своих параметрах, принимая чужие параметры и подстраиваясь к ним. После определения всех деталей начинается обмен данными.

Для правильной работы платы должны быть корректно установлены следующие параметры:

• номер прерывания;

• базовый адрес порта;

• базовый адрес памяти;

• тип трансивера.

Для обеспечения совместимости компьютера и сети плата СА должна соответствовать внутренней структуре компьютера (архитектуре шины данных) и иметь соответствующий соединитель, подходящий к типу кабельной системы.







Сейчас читают про: